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STRONG CONVERGENCE OF GENERAL ITERATIVE

ALGORITHMS FOR NONEXPANSIVE MAPPINGS IN

BANACH SPACES

Jong Soo Jung

Abstract. In this paper, we introduce two general iterative algorithms
(one implicit algorithm and other explicit algorithm) for nonexpansive
mappings in a reflexive Banach space with a uniformly Gâteaux differ-
entiable norm. Strong convergence theorems for the sequences generated
by the proposed algorithms are established.

1. Introduction

Let E be a real Banach space with the norm ‖ · ‖, and let E∗ be the dual

space of E. Let J denote the normalized duality mapping from E into 2E
∗

defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ‖x‖}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pair between E and E∗. Let C be a
nonempty closed convex subset of E. For the mapping T : C → C, we denote
the fixed point set of T by Fix(T ), that is, Fix(T ) = {x ∈ C : Tx = x}. Recall
that the mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

In a Banach space E having a single-valued normalized duality mapping J ,
we say that an operator A is strongly positive on E if there exists a γ > 0 with
the property

(1.1) 〈Ax, J(x)〉 ≥ γ‖x‖2

and

‖aI − bA‖ = sup
‖x‖≤1

|〈(aI − bA)x, J(x)〉|, a ∈ [0, 1], b ∈ [−1, 1],
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for all x ∈ E, where I is the identity mapping. If E := H is a real Hilbert
space, then the inequality (1.1) reduce to

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H.

One classical way to study nonexpansive mappings is to use contractions
to approximate a nonexpansive mapping. More precisely, take t ∈ (0, 1) and
define a contraction Tt : E → E by

Ttx = tu+ (1− t)Tx, ∀x ∈ E,

where u ∈ E is an arbitrarily chosen point. Banach’s contraction mapping
principle guarantees that Tt has unique a fixed point xt in E, which uniquely
solves the following fixed point equation:

xt = tu+ (1− t)Txt.

(Such a path {xt} is said to be an approximating fixed point of T since it
possesses the property that if {xt} is bounded, then limt→0 ‖Txt−xt‖ = 0.) It
is unclear, in general, what is the behavior of xt as t → 0, even if T has a fixed
point. However, in the case of T having a fixed point, Browder [3] proved that if
E is a Hilbert space, then xt converges strongly to a fixed point of T . Reich [10]
extended Browder’s result to the setting of Banach spaces and proved that if
E is a uniformly smooth Banach space, then {xt} converges strongly to a fixed
point of T and the limit defines the (unique) sunny nonexpansive retraction
from E onto Fix(T ). Xu [16] proved Reich’s results hold in reflexive Banach
space having a weakly continuous duality mapping.

In a real Hilbert space H , in 2000, Moudafi [9] introduced the following vis-
cosity approximation methods for nonexpansive mapping T on C in an implicit
way and an explicit way, respectively:

xn = αnf(xn) + (1 − αn)Txn, n ≥ 0,

and

(1.2) xn+1 = αnf(xn) + (1 − αn)Txn, n ≥ 0,

where {αn} is a sequence in (0, 1); and f : C → C is a contractive mapping (i.e.,
there exists a constant k ∈ (0, 1) such that ‖f(x)−f(y)‖ ≤ k‖x−y‖, ∀x, y ∈ H).

In 2006, Marino and Xu [8] considered the following general iterative algo-
rithm for nonexpansive mapping T on H in an implicit way:

(1.3) xt = tγf(xt) + (I − tA)Txt, ∀t ∈ (0,min{1, ‖A‖−1}),

where A : H → H is a strongly positive linear bounded operator with a co-
efficient γ > 0; f : H → H is a contractive mapping; and γ > 0. In 2011,
Wangkeeree et al. [13] extended the result of Marino and Xu [8] to a reflex-
ive Banach space having a weakly continuous duality mapping. The results of
Marino and Xu [8] and Wangkeeree et al. [13] improved upon the corresponding
results of Browder [3], Moudafi [9], Reich [10] and Xu [16] to a general approx-
imating fixed point {xt} defined by (1.3). Combining the Moudafi’s method
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(1.2) with Xu’s method [15], Marino and Xu [8] also considered the following
general iterative algorithm for a nonexpansive mapping T in an explicit way:

(1.4) xn+1 = αnγf(xn) + (I − αnA)Txn, ∀n ≥ 0,

where f is a contractive mapping on H ; and γ > 0. They proved that if
the sequence {αn} in (0, 1) satisfies appropriate conditions, then the sequence
{xn} generated by (1.4) converges strongly to the unique solution of a certain
variational inequality related to A.

In this paper, as a continuation of study in this direction, we present new
general iterative algorithms for the nonexpansive mapping in a reflexive Banach
space with a uniformly Gâteaux differentiable norm. First, we introduce a gen-
eral implicit iterative algorithm. Consequently, by discretizing the continuous
implicit method, we provide a general explicit iterative algorithm for finding a
fixed point of the nonexpansive mapping. Under some control conditions, we
establish the strong convergence of the proposed explicit algorithm to a fixed
point of the mapping, which solves a ceratin variational inequality.

2. Preliminaries and lemmas

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual.
A Banach space E is called strictly convex if its unit sphere U = {x ∈ E :

‖x‖ = 1} does not contain any linear segment. For every ε with 0 ≤ ε ≤ 2, the
modulus δ(ε) of convexity of E is defined by

δ(ε) = inf{1− ‖
x+ y

2
‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}.

E is said to be uniformly convex if δ(ε) > 0 for every ε > 0. If E is uniformly
convex, then E is reflexive and strictly convex.

The norm of E is said to be Gâteaux differentiable (and E is said to be
smooth) if

(2.1) lim
t→0

‖x+ ty‖ − ‖x‖

t

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said to
be uniformly Gâteaux differentiable if for each y ∈ U , this limit is attained
uniformly for x ∈ U . Finally, the norm is said to be uniformly Fréchet differ-

entiable (and E is said to be uniformly smooth) if the limit in (2.1) is attained
uniformly for (x, y) ∈ U × U . Since the dual E∗ of E is uniformly convex if
and only if the norm of E is uniformly Fréchet differentiable, every Banach
space with a uniformly convex dual is reflexive and has a uniformly Gâteaux
differentiable norm. The converse implication is false. A discussion of these
and related concepts may be found in [5].

Let J be the normalized duality mapping from E into 2E
∗

. It is well-known
that J is single valued if and only if E is smooth, and that if E has a uniformly
Gâteaux differentiable norm, J is uniformly continuous on bounded subsets of
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E from the strong topology of E to the weak∗ topology of E∗. For these facts,
see [5, 12].

Let LIM be a linear continuous functional on ℓ∞. According to time and
circumstances, we use LIMn(an) instead of LIM(a) for every a = {an} ∈ ℓ∞.
LIM is called a Banach limit if ‖LIM‖ = LIM(1) = 1 and LIMn(an+1) =
LIMn(an) for every a = {an} ∈ ℓ∞.

Recall that a closed convex subset C of E is said to have the fixed point

property for nonexpansive self-mappings (FPP for short) if every nonexpansive
mapping T : C → C has a fixed point, that is, there is a point p ∈ C such
that Tp = p. It is well-known that every bounded closed convex subset of a
uniformly smooth Banach space has the FPP ([7, p. 45]).

The mapping T : C → C is said to be pseudocontractive if there exists
j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, ∀x, y ∈ C,

and T is said to be strongly pseudocontractive it there exists a constant k ∈ (0, 1)
and j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ k‖x− y‖2, ∀x, y ∈ C.

We need the following lemmas for the proof of our main results.

Lemma 2.1 ([5]). Let E be a Banach space, let C be a nonempty closed convex

subset of E, and let T : C → C be a continuous strongly pseudocontractive

mapping. Then T has a fixed point in C.

Lemma 2.2 ([4]). Assume that A is a strongly positive linear bounded operator

on a smooth Banach space E with coefficient γ > 0 and 0 < ρ < ‖A‖−1. Then

‖I − ρA‖ ≤ 1− ργ.

Lemma 2.3 ([14]). Let {sn} be a sequence of nonnegative real numbers satis-

fying

sn+1 ≤ (1− λn)sn + λnδn + ωn, ∀n ≥ 1,

where {λn}, {δn} and ωm satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=1 λn = ∞ or, equivalently,
∏∞

n=1(1− λn) = 0;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=1 λn|δn| < ∞;

(iii) ωn ≥ 0 and
∑∞

n=1 ωn < ∞.

Then limn→∞ sn = 0.

Lemma 2.4 ([11]). Let {xn} and {yn} be bounded sequences in a Banach space

E such that

xn+1 = λnxn + (1− λn)yn, ∀n ≥ 0,

where {λn} is a sequence in [0, 1] such that

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 1.
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Assume that

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.5 ([1, 2]). Let C be a closed convex of a reflexive and strictly convex

Banach space E. Then Co = {x ∈ C : ‖x‖ = inf{‖y‖ : y ∈ C}} is a singleton.

Lemma 2.6. Let E be a smooth Banach space. Then there holds

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, J(x+ y)〉, ∀x, y ∈ E.

3. Main results

Throughout the rest of this paper, we always assume the following:

• E is a real smooth Banach space;
• C is a nonempty closed subspace of E;
• A : C → C is a strongly positive linear bounded operator with a
constant γ > 0;

• h : C → C is a continuous bounded strongly pseudocontractive map-
ping with a pseudocontractive coefficient k ∈ (0, 1);

• The constant γ > 0 satisfies 0 < γ < γ
k ;

• T : C → C is a nonexpansive mapping with Fix(T ) 6= ∅.

In this section, first, we introduce the following general iterative algorithm
that generates a net {xt}, t ∈ (0,min{1, ‖A‖−1}) in an implicit way:

(3.1) xt = tγh(xt) + (I − tA)Txt.

Now, for t ∈ (0,min{1, ‖A‖−1}), consider the mapping Gt : C → C defined
by

Gt(x) := tγh(x) + (I − tA)Tx, x ∈ C.

Then Gt is a continuous strongly pseudocontractive mapping with a pseudo-
contractive coefficient 1− t(γ − γk) ∈ (0, 1). Indeed, from Lemma 2.2 we have
for each x, y ∈ C,

〈Gtx−Gty, J(x− y)〉

= tγ〈h(x)− h(y), J(x− y)〉+ 〈(I − tA)(Tx− Ty), J(x− y)〉

≤ tγk‖x− y‖2 + ‖I − tA‖‖Tx− Ty‖‖x− y‖

≤ tγk‖x− y‖2 + (1− tγ)‖x− y‖2

= (1− t(γ − γk))‖x− y‖2.

Thus, by Lemma 2.1,Gt has a unique fixed point, denoted by xt, which uniquely
solves the fixed point equation (3.1).

We summarize the basic properties of {xt}.

Proposition 3.1. Let {xt} be defined via (3.1). Then the following hold:

(a) xt is a unique path t 7→ xt ∈ C, t ∈ (0,min{1, ‖A‖−1}).
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(b) If v is a fixed point of T , then for each t ∈ (0,min{1, ‖A‖−1})

〈(A− γh)xt, J(xt − v)〉 ≤ 〈A(I − T )xt, J(xt − v)〉.

(c) If T has a fixed point in C, then the path {xt} is bounded and ‖xt −
Txt‖ → 0 as t → 0.

Proof. (a) To see the continuity of xt, let t, t0 ∈ (0,min{1, ‖A‖−1}). Then we
get

‖xt − xt0‖
2

= 〈tγh(xt) + (I − tA)Txt − (t0γh(xt0) + (I − t0A)Txt0), J(xt − xt0)〉

= 〈(t− t0)γh(xt) + t0γ(h(xt)− h(xt0))− (t− t0)ATxt, J(xt − xt0)〉

+ 〈(I − t0A)(Txt − Txt0), J(xt − xt0)〉

≤ (γ‖h(xt)‖+ ‖ATxt‖)(t− t0)‖xt − xt0‖+ t0γk‖xt − xt0‖
2

+ (1 − t0γ)‖xt − xt0‖
2.

It follows that

‖xt − xt0‖ ≤
γ‖h(xt)‖+ ‖ATxt‖

t0(γ − γk)
|t− t0|.

This shows that xt is locally Lipschitzian and hence continuous.
(b) Suppose that v is a fixed point of T . Since T is nonexpansive, we have

for all x, y ∈ C

〈(I − T )x− (I − T )y, J(x− y)〉 = ‖x− y‖2 − 〈Tx− Ty, J(x− y)〉

≥ ‖x− y‖2 − ‖x− y‖2 = 0.

Thus, from (3.1) we obtain

〈(A− γh)xt, J(xt − v)〉 = −
1

t
〈(I − tA)(I − T )xt, J(xt − v)〉

= −
1

t
〈(I − T )xt − (I − T )v, J(xt − v)〉

+ 〈A(I − T )xt, J(xt − v)〉

≤ 〈A(I − T )xt, J(xt − v)〉.

(c) Let v ∈ Fix(T ). From strong pseudocontractivity of h, it follows that

〈h(xt)− h(v), J(xt − v)〉 ≤ k‖xt − v‖2.

Thus we have

‖xt − v‖2 = 〈(I − tA)(Txt − v) + t(γh(xt)−Av), J(xt − v)〉

≤ (1− tγ)‖xt − v‖2 + t〈γh(xt)−Av, J(xt − v)〉

= (1− tγ)‖xt − v‖2 + tγ〈h(xt)− h(v), J(xt − v)〉

+ t〈γh(v)−Av, J(xt − v)〉

≤ (1− tγ)‖xt − v‖2 + tγk‖xt − v‖2 + t‖γh(v)−Av‖‖xt − v‖.
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It follows that

‖xt − v‖ ≤
‖γh(v)−Av‖

γ − γk
.

Hence {xt} is bounded for t ∈ (0,min{1, ‖A‖−1}). Since ‖Txt− v‖ ≤ ‖xt − v‖,
{Txt} is bounded and so are {ATxt} and {Axt}. Moreover, since h is a bounded
mapping, {h(xt)} is bounded. This implies that

‖xt − Txt‖ = t‖γh(xt)−ATxt‖ → 0 as t → 0. �

Using Proposition 3.1, we establish strong convergence of {xt}.

Theorem 3.2. Let E be a reflexive Banach space with a uniformly Gâteaux

differentiable norm. Assume that every weakly compact convex subset of E has

the FPP for nonexpansive mappings. Let {xt} be defined via (3.1). Then, as

t → 0, {xt} converges strongly to a fixed point p of T , which is the unique

solution in Fix(T ) of the variational inequality

(3.2) 〈(A− γh)p, J(p− q)〉 ≤ 0, ∀q ∈ Fix(T ).

Proof. First, we show the uniqueness of the solution of the variational inequal-
ity (3.2). Suppose both p1 ∈ Fix(T ) and p2 ∈ Fix(T ) are solutions of the
variational inequality (3.2). We have

〈(A− γh)p1, J(p1 − p2)〉 ≤ 0

and

〈(A − γh)p2, J(p2 − p1)〉 ≤ 0.

Adding up the above two inequalities, we obtain

〈(A − γh)p1 − (A− γh)p2, J(p1 − p2)〉 ≤ 0.

Note that

〈(A− γh)p1 − (A− γh)p2, J(p1 − p2)〉 = 〈A(p1 − p2)J(p1 − p2)〉

− γ〈h(p1)− h(p2), J(p1 − p2)〉

≥ γ‖p1 − p2‖
2 − γk‖p1 − p2‖

2

= (γ − γk)‖p1 − p2‖
2 ≥ 0.

Consequently, we have p1 = p2 and the uniqueness is proved. We use p̃ to the
unique solution of the variational inequality (3.2).

Now, we may assume, without loss of generality, that t ≤ ‖A‖−1. From
Proposition 3.1(c), we have that {xt} is bounded.

Assume that tn → 0 as n → ∞. Set xn := xtn . We use the so-called
optimization method. Define φ : C → R by φ(z) = LIMn(‖xn − z‖2), z ∈ C,
where LIM is a Banach limit on l∞. Then φ is continuous and convex, φ(z) →
∞ as ‖z‖ → ∞. Since E is reflexive, φ attains its infimum over C ([2, p. 79]).
Let

K = {u ∈ C : φ(u) = min
z∈C

φ(z)}.
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We see easily that K is a nonempty closed bounded convex subset of E. Note
that ‖xn − Txn‖ → 0 as n → ∞ by Proposition 3.1(c). Thus, it follows that
for each u ∈ K,

φ(Tu) = LIMn(‖xn − Tu‖2)

= LIMn(‖Txn − Tu‖2)

≤ LIMn(‖xn − u‖2) = φ(u),

which implies that T (K) ⊂ K, that is, K is invariant under T . So, by the
hypothesis, T has a fixed point p ∈ K. For x − Ap ∈ C and t with 0 < t <
min{1, ‖A‖−1}, by Lemma 2.6, we get

‖xn − p− t(x−Ap)‖2 ≤ ‖xn − p‖2 − 2t〈x−Ap, J(xn − p− t(x−Ap)〉.

Let ε > 0 be given. Since the norm of E is uniformly Gâteaux differentiable, the
duality mapping J is norm-to-weak∗ uniformly continuous on bounded subsets
of E. Therefore

|〈x−Ap, J(xn − p− t(x−Ap)− J(xn − p)〉| < ε

for t is close enough to 0. Consequently, we have

〈x−Ap, J(xn − p)〉 < ε+ 〈x −Ap, J(xn − p− t(x−Ap))〉

≤ ε+
1

2t
(‖xn − p‖2 − ‖xn − p− t(x−Ap)‖2).

Since p is a minimizer of φ over C, we have

LIMn(〈x −Ap, J(xn − p)〉)

≤ ε+
1

2t
(LIMn(‖xn − p‖2)− LIMn(‖xn − p− t(x−Ap)‖2))

≤ ε.

Thus, we obtain

(3.3) LIMn(〈x−Ap, J(xn − p)〉) ≤ 0, ∀x ∈ C.

On the other hand, since xn − p = tn(γh(xn) − Ap) + (I − tnA)(Txn − p),
it follows that

‖xn − p‖2 = tn〈γh(xn)−Ap, J(xn − p)〉+ 〈(I − tnA)(Txn − p), J(xn − p)〉

≤ tn〈γh(xn)−Ap, J(xn − p)〉+ (1− tnγ)‖xn − p‖2,

which implies that for x ∈ C,

(3.4)

‖xn − p‖2 ≤
1

γ
〈γh(xn)−Ap, J(xn − p)〉

=
1

γ
〈γh(xn)− x, J(xn − p)〉+

1

γ
〈x−Ap, J(xn − p)〉.
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Combining (3.3) and (3.4), we obtain

LIMn(‖xn − p‖2)

≤
1

γ
LIMn(〈γh(xn)− x, J(xn − p)〉) +

1

γ
LIMn(〈x −Ap, J(xn − p)〉)

≤
1

γ
LIMn(〈γh(xn)− x, J(xn − p)〉).

In particular,

γLIMn(‖xn−p‖2) ≤ LIMn(〈γh(xn)−γh(p), J(xn−p)〉) ≤ γkLIMn(‖xn−p‖2).

Hence, (γ − γk)LIMn(‖xn − p‖2) ≤ 0. Since γ > γk, we have

LIMn(‖xn − p‖2) = 0,

and hence there exists a subsequence which is still denoted {xn} such that
xn → p

Next, we prove that p solves the variational inequality (3.2). Indeed, from
Proposition 3.1(b), we have for q ∈ Fix(T ),

〈(A− γh)xt, J(xt − q)〉 ≤ 〈A(I − T )xt, J(xt − q)〉.

Replacing t with tn, letting n → ∞ and noting that (I−T )xtn → (I−T )p = 0,
we obtain

〈(A− γh)p, J(p− q)〉 ≤ 0.

That is, p ∈ Fix(T ) is a solution of the variational inequality (3.2). Then
p = p̃. In summary, we have that each cluster point of {xn} converges strongly
to p as tn → 0. This complete the proof. �

Next, we substitute the fixed point property assumption, mentioned in The-
orem 3.2, by assuming that the space E is strict convex.

Theorem 3.3. Let E be a reflexive and strictly convex Banach space with a

uniformly Gâteaux differentiable norm. Let {xt} be defined via (3.1). Then,

as t → 0, {xt} converges strongly to a fixed point p of T , which is the unique

solution in Fix(T ) of the variational inequality (3.2).

Proof. Let w ∈ Fix(T ). As in the proof of Theorem 3.2, we define φ : C → R

by φ(z) = LIMn(‖xn − z‖2), z ∈ C, where LIM is a Banach limit on l∞. Let

K = {u ∈ C : φ(u) = min
z∈C

φ(z)}.

Then, by the proof of Theorem 3.2, K is invariant under T , Moreover K con-
tains a fixed point of T . To this end, define the function g : K → R by
g(u) = ‖u − w‖. Then, by Theorem 1.2 of [2] (or Theorem 2.5.7 of [1]) we
conclude that the set

Ko = {v ∈ K : g(v) = min{g(u) : u ∈ K}}
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is nonempty, and by Lemma 2.5, Ko is singleton. Denote such a singleton by
p ∈ K. Then we also know that Tw = w and

‖Tp− w‖ = ‖Tp− Tw‖ ≤ ‖p− w‖.

Therefore Tp = p. We now follows the proof of Theorem 3.2. �

Now, we propose the following general iterative algorithm which generates
a sequence in an explicit way:

(3.5)

{

x1 = x ∈ C

xn+1 = αnγh(xn) + (I − αnA)Txn, n ≥ 1,

where {αn} is a sequence in (0, 1).
Using Theorem 3.2 and Theorem 3.3, we obtain strong convergence of the

sequence {xn} generated by (3.5).

Theorem 3.4. Let {xn} be a sequence generated by the explicit algorithm (3.5).
Let {αn} satisfy the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) |αn+1 − αn| ≤ o(αn+1) + σn,

∑∞
n=1 σn < ∞.

If one of the following assumptions holds:

(H1) E is a reflexive Banach space with a uniformly Gâteaux differentiable

norm, and every weakly compact convex subset of E has the FPP for

nonexpansive mappings;
(H2) E is a reflexive and strictly convex Banach space with a uniformly

Gâteaux differentiable norm,

then {xn} converges strongly to a fixed point p of T , which is the unique solution

in Fix(T ) of the variational inequality (3.2).

Proof. By condition (C1), we may assume, without loss of generality, that
αn < ‖A‖−1 for all n ≥ 1. By Lemma 2.2, we have ‖I − αnA‖ ≤ (1 − αnγ).

Now we divide the proof into five steps.

Step 1. We show that {xn} is bounded. Indeed, pick any p ∈ Fix(T ) to
obtain

‖xn+1 − p‖

= ‖αnγh(xn) + (I − αnA)Txn − p‖

= ‖αn(γh(xn)− γh(p)) + αn(γh(p)−Ap) + (I − αnA)(Txn − p)‖

≤ αnγk‖xn − p‖+ αn‖γh(p)−Ap‖+ (1− αnγ)‖xn − p‖

≤ (1− αn(γ − γk))‖xn − p‖+ αn(γ − γk)
‖γh(p)−Ap‖

γ − γk
.

It follows from induction that

‖xn − p‖ ≤ max

{

‖x1 − p‖,
‖γh(p)−Ap‖

γ − γk

}

, ∀n ≥ 1.
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Hence {xn} is bounded. Moreover, since h is a bounded mapping, {h(xn)} is
bounded. Also, {Txn} and {ATxn} are bounded.

As a direct consequence, from condition (C1) we get

(3.6) ‖xn+1 − Txn‖ = αn‖γh(xn)−ATxn‖ → 0 as n → ∞.

Step 2. We show that limn→∞ ‖xn+1 − xn‖ = 0. Indeed, from (3.5), it is
easily seen that

‖xn+2 − xn+1‖

= ‖αn+1γh(xn+1) + (I − αn+1A)Txn+1 − αnγh(xn)− (I − αnA)Txn‖

= ‖(I − αn+1A)(Txn+1 − Txn) + (αn − αn+1)(ATxn − γh(xn))

+ αn+1γ(h(xn+1 − h(xn))‖

≤ (1− αnγ)‖xn+1 − xn‖+ |αn − αn+1|‖ATxn − γh(xn)‖

+ αn+1γk‖xn+1 − xn‖

= (1− αn+1(γ − γk))‖xn+1 − xn‖+ |αn − αn+1|‖ATxn − γh(xn)‖

for ∀n ≥ 1. So, from the condition (C2), we obtain

(3.7) ‖xn+2 − xn+1‖ ≤ (1− αn+1(γ − γk))‖xn+1 − xn‖+ (o(αn+1) + σn)M

for ∀n ≥ 1, where M = supn≥1{‖ATxn − γh(xn)‖}. Put sn = ‖xn+1 − xn‖,
λn = αn+1(γ − γk)), λnδn = o(αn+1)M and ωn = σnM . Then, from the
conditions (C1) and (C2), it follows that λn → 0 as n → ∞,

∑∞
n=1 λn = ∞

and
∑∞

n=1 ωn = M
∑∞

n=1 σn < ∞. Since (3.7) reduces

sn+1 = (1− λn)sn + λnδn + ωn,

it follows from Lemma 2.3 that

lim
n→∞

‖xn+1 − xn‖ = 0.

Step 3. We show that limn→∞ ‖xn − Txn‖ = 0. In fact, from (3.6) and Step
2 it follows that

‖Txn − xn‖ ≤ ‖Txn − xn+1‖+ ‖xn+1 − xn‖ → 0 as n → ∞.

Step 4. We show that lim supn→∞〈γh(p) − Ap, J(xn − p)〉 ≤ 0, where p =
limt→0 xt and xt is defined by (3.1). In fact, let xt = tγh(xt) + (I − tA)Txt.
Then, it follows from Theorem 3.2 or Theorem 3.3 that {xt} converges strongly
to p ∈ Fix(T ) which is the unique solution of the variational inequality (3.2).
Noting that

xt − xn

= tγh(xt) + Txt − tATxt − xn

= t(γh(xt)−Axt) + (Txt − xn)− t(ATxt −Axt)

= t(γh(xt)−Axt) + (Txt − Txn) + (Txn − xn) + t2A(γh(xt)−ATxt),
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we have

‖xt − xn‖
2

= t〈γh(xt)−Axt, J(xt − xn)〉+ 〈Txt − Txn, J(xt − xn)〉

+ 〈Txn − xn, J(xt − xn)〉+ t2〈A(γh(xt)−ATxt), J(xt − xn)〉

≤ t〈γh(xt)−Axt, J(xt − xn)〉+ ‖xt − xn‖
2

+ ‖Txn − xn‖‖xt − xn‖+ t2‖A(γh(xt)−ATxt)‖‖xt − xn‖,

which implies that

(3.8)

〈γh(xt)−Axt, J(xn − xt)〉

≤
‖Txn − xn‖

t
+ t‖A(γh(xt)−ATxt)‖‖xt − xn‖

≤
‖Txn − xn‖

t
+ tL,

where L > 0 is a constant such that L = sup{‖A(γh(xt)− ATxt)‖‖xt − xn‖ :
n ≥ 1 and t ∈ (0,min{1, ‖A‖−1})}. Since xn − Txn → 0 by Step 3, taking the
upper limit as n → ∞ in (3.8), we derive

(3.9) lim sup
n→∞

〈γh(xt)−Axt, J(xn − xt)〉 ≤ tM.

Taking the lim sup as t → 0 in (3.9) and noticing that the fact that the two
limits are interchangeable due to the fact that J is uniformly continuous on
bounded subsets of E from the strong topology of E to the weak∗ topology of
E∗, we obtain

lim sup
n→∞

〈γh(p)−Ap, J(xn − p)〉 ≤ 0.

Step 5. We show that limn→∞ xn = p, where p = limt→0 xt ∈ Fix(T ), xt being
defined by (3.1), which is the unique solution of the variational inequality (3.2).
Indeed, from (3.5), Lemma 2.2 and Lemma 2.6, we derive

‖xn+1 − p‖2

= ‖αn(γh(xn)−Ap) + (I − αnA)Txn − (I − αnA)p‖
2

≤ ‖(I − αnA)(Txn − p)‖2 + 2αn〈γh(xn)−Ap, J(xn+1 − p)〉

≤ (1 − αnγ)
2‖xn − p‖2 + 2αn〈γh(xn)− γh(p), J(xn+1 − p)〉

+ 2αn〈γh(p)−Ap, J(xn+1 − p)〉

≤ (1 − αnγ)
2‖xn − p‖2 + 2αnγk‖xn − p‖‖xn+1 − p‖

+ 2αn〈γh(p)−Ap, J(xn+1 − p)〉

≤ (1 − αnγ)
2‖xn − p‖2 + αnγk(‖xn − p‖2 + ‖xn+1 − p‖2)

+ 2αn〈γh(p)−Ap, J(xn+1 − p)〉.



STRONG CONVERGENCE OF GENERAL ITERATIVE ALGORITHMS 1043

This implies that
(3.10)

‖xn+1 − p‖2

≤
(1− αnγ)

2 + αnγk

1− αnγk
‖xn − p‖2 +

2αn

1− αnγk
〈γh(p)−Ap, J(xn+1 − p)〉

=

(

1−
2αn(γ − γk)

1− αnγk

)

‖xn − p‖2 +
α2
nγ

2

1− αnγk
‖xn − p‖2

+
2αn

1− αnγk
〈γh(p)−Ap, J(xn+1 − p)〉

≤

(

1−
2αn(γ − γk)

1− αnγk

)

‖xn − p‖2 +
2αn(γ − γk)

1− αnγk
·

αnγ
2

2(γ − γk)
L

+
2αn(γ − γk)

1− αnγk
·

1

γ − γk
〈γh(p)−Ap, J(xn+1 − p)〉,

where L = sup{‖xn − p‖ : n ≥ 1}. Put λn = 2αn(γ−γk)
1−αnγk

and

δn =
αnγ

2

2(γ − γk)
L+

1

γ − γk
〈γh(p)−Ap, J(xn+1 − p)〉.

Then it follows from the condition (C1) and Step 4 that limn→∞ λn = 0,
∑∞

n=1 λn = ∞, and lim supn→∞ δn ≤ 0. (3.10) reduces to

(3.11) ‖xn+1 − p‖2 ≤ (1− λn)‖xn − p‖2 + λnδn.

Thus, applying Lemma 2.3 together with ωn = 0 to (3.11), we conclude that
limn→∞ xn = p. This completes the proof. �

Corollary 3.5. Let E be a uniformly smooth Banach space. Let {xn} be a se-

quence generated by the explicit algorithm (3.5). Let {αn} satisfy the conditions

(C1) and (C2) in Theorem 3.4. Then {xn} converges strongly to a fixed point p
of T , which is the unique solution in Fix(T ) of the variational inequality (3.2).

Removing the condition |αn+1 − αn| ≤ o(αn+1) + σn,
∑∞

n=1 σn < ∞ on the
sequence {αn} in Theorem 3.4, we have the following result.

Theorem 3.6. Let {xn} be a sequence generated by the following explicit

algorithm:

(3.12)

{

x1 = x ∈ C

xn+1 = αnγh(xn) + βnxn + ((1− βn)I − αnA)Txn, n ≥ 1,

where {αn} and {βn} are sequences in (0, 1), which satisfy the following con-

ditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

If one of the following assumptions holds:
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(H1) E is a reflexive Banach space with a uniformly Gâteaux differentiable

norm, and every weakly compact convex subset of E has the FPP for

nonexpansive mappings;
(H2) E is a reflexive and strictly convex Banach space with a uniformly

Gâteaux differentiable norm,

then {xn} converges strongly to a fixed point p of T , which is the unique solution

in Fix(T ) of the variational inequality (3.2).

Proof. We only include the difference from the proof of Theorem 3.5. By
conditions (C1) and (C2), we may assume, without loss of generality, that
αn

1−βn
< ‖A‖−1 for all n ≥ 1. By Lemma 2.2, we have ‖(1 − βn)I − αnA‖ ≤

(1− βn − αnγ).

Step 1. We show that {xn}, {h(xn)}, {Txn} and {ATxn} are bounded.
Indeed, pick any p ∈ Fix(T ) to obtain

‖xn+1 − p‖ = ‖αnγh(xn) + βnxn + ((1− βn)I − αnA)Txn − p‖

= ‖αn(γh(xn)− γh(p)) + αn(γh(p)−Ap) + βn(xn − p)

+ ((1− βn)I − αnA)(Txn − p)‖

≤ αnγk‖xn − p‖+ αn‖γh(p)−Ap‖

+ βn‖xn − p‖+ (1 − βn − αnγ)‖xn − p‖

= (1 − αn(γ − γk))‖xn − p‖+ αn(γ − γk)
‖γh(p)−Ap‖

γ − γk
.

The rest follows from Step 1 of the proof of Theorem 3.4.

Step 2. We show that limn→∞ ‖xn+1−xn‖ = 0. To this end, define a sequence
{zn} by zn = (xn+1 − βnxn)/(1 − βn) so that

(3.13) xn+1 = βnxn + (1− βn)zn.

We now observe that
(3.14)

zn+1 − zn

=
xn+2 − βn+1xn+1

1− βn+1
−

xn+1 − βnxn

1− βn

=
αn+1γh(xn+1) + βn+1xn+1 + ((1 − βn+1)I − αn+1A)Txn+1 − βn+1xn+1

1− βn+1

−
αnγh(xn) + βnxn + ((1− βn)I − αnA)Txn − βnxn

1− βn

=
αn+1

1− βn+1
(γh(xn+1)−ATxn+1) + Txn+1 − Txn

+
αn

1− βn
(ATxn)− γh(xn)).
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It follows from (3.14) that
(3.15)

‖zn+1 − zn‖ − ‖xn+1 − xn‖

≤
αn+1

1− βn+1
(‖γh(xn+1)‖+ ‖ATxn+1‖) +

αn

1− βn
(‖γh(xn)‖+ ‖ATxn‖).

By conditions (C1), (C2) and (3,15), we obtain that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence by Lemma 2.4, we have

(3.16) lim
n→∞

‖zn − xn‖ = 0.

It then follows from condition (C2), (3.13) and (3.16) that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0.

Step 3. We show that limn→∞ ‖xn −Txn‖ = 0. In fact, from (3.12) it follows
that

‖Txn − xn‖ ≤ ‖Txn − xn+1‖+ ‖xn+1 − xn‖

≤ ‖αnγh(xn)− αnATxn‖+ βn‖xn − Txn‖+ ‖xn+1 − xn‖.

This implies that

(1− βn)‖Txn − xn‖ ≤ αn(γ‖h(xn)‖+ ‖ATxn‖) + ‖xn+1 − xn‖.

Thus, by conditions (C1) and (C2) and Step 2, we have

lim
n→∞

‖Txn − xn‖ = 0.

Step 4. We show that lim supn→∞〈γh(p) − Ap, J(xn − p)〉 ≤ 0, where p =
limt→0 xt and xt is defined by (3.1). The result follows from Step 4 in the proof
of Theorem 3.4.

Step 5. We show that limn→∞ xn = p, where p = limt→0 xt ∈ Fix(T ), xt being
defined by (3.1), which is the unique solution of the variational inequality (3.2).
Indeed, from (3.12), observe that

xn+1 − p = αn(γh(xn)−Ap) + βn(xn − p) + ((1 − βn)I − αnA)(Txn − p).
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By Lemma 2.2 and Lemma 2.6, we derive

‖xn+1 − p‖2 ≤ (βn‖xn − p‖+ ‖((1− βn)I − αnA)(Txn − p)‖)2

+ 2αn〈γh(xn)−Ap, J(xn+1 − p)〉

≤ (βn‖xn − p‖+ (1− βn − αnγ)‖xn − p‖)2

+ 2αn〈γh(xn)−Ap, J(xn+1 − p)〉

= (1− αnγ)
2‖xn − p‖2 + 2αn〈γh(xn)− γh(p), J(xn+1 − p)〉

+ 2αn〈γh(p)−Ap, J(xn+1 − p)〉

≤ (1− αnγ)
2‖xn − p‖2 + 2αnγk‖xn − p‖‖xn+1 − p‖

+ 2αn〈γh(p)−Ap, J(xn+1 − p)〉

≤ (1− αnγ)
2‖xn − p‖2 + αnγk(‖xn − p‖2 + ‖xn+1 − p‖2)

+ 2αn〈γh(p)−Ap, J(xn+1 − p)〉.

The remainder follows from the proof of Theorem 3.4. �

Remark 3.7. Our results in this paper extend, improve and develop the corre-
sponding results in [8, 9, 10, 13] and the references therein.
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