DOI QR코드

DOI QR Code

GENERALIZED RELAXED PROXIMAL POINT ALGORITHMS INVOLVING RELATIVE MAXIMAL ACCRETIVE MODELS WITH APPLICATIONS IN BANACH SPACES

  • Verma, Ram U. (FLORIDA INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATHEMATICAL SCIENCES, INTERNATIONAL PUBLICATIONS (USA))
  • Published : 2010.04.30

Abstract

General models for the relaxed proximal point algorithm using the notion of relative maximal accretiveness (RMA) are developed, and then the convergence analysis for these models in the context of solving a general class of nonlinear inclusion problems differs significantly than that of Rockafellar (1976), where the local Lipschitz continuity at zero is adopted instead. Moreover, our approach not only generalizes convergence results to real Banach space settings, but also provides a suitable alternative to other problems arising from other related fields.

Keywords

References

  1. R. P. Agarwal and R. U. Verma, Role of relative A-maximal monotonicity in overrelaxed proximal-point algorithms with applications, J. Optim. Theory Appl. 143 (2009), no. 1, 1-15; doi 10.1017/s10957-009-9554-z.
  2. J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming 55 (1992), no. 3, Ser. A, 293-318. https://doi.org/10.1007/BF01581204
  3. Y. P. Fang and N. J. Huang, H-monotone operators and system of variational inclusions, Comm. Appl. Nonlinear Anal. 11 (2004), no. 1, 93-101.
  4. M. Fukushima, The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem, Math. Programming 72 (1996), no. 1, Ser. A, 1-15. https://doi.org/10.1007/BF02592328
  5. R. Glowinski and P. Le Tellec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
  6. H. Y. Lan, J. H. Kim, and Y. J. Cho, On a new system of nonlinear A-monotone multivalued variational inclusions, J. Math. Anal. Appl. 327 (2007), no. 1, 481-493. https://doi.org/10.1016/j.jmaa.2005.11.067
  7. B. Martinet, Regularisation d’inequations variationnelles par approximations successives, Rev. Francaise Inform. Rech. Oper. Ser. R-3 4 (1970), 154-158.
  8. A. Moudafi, Mixed equilibrium problems: sensitivity analysis and algorithmic aspect, Comput. Math. Appl. 44 (2002), no. 8-9, 1099-1108. https://doi.org/10.1016/S0898-1221(02)00218-3
  9. S. M. Robinson, Composition duality and maximal monotonicity, Math. Program. 85 (1999), no. 1, Ser. A, 1-13. https://doi.org/10.1007/s101070050043
  10. R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization 14 (1976), no. 5, 877-898. https://doi.org/10.1137/0314056
  11. R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976), no. 2, 97-116. https://doi.org/10.1287/moor.1.2.97
  12. R. T. Rockafellar and R. J.-B.Wets, Variational Analysis, Springer-Verlag, Berlin, 2004.
  13. P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities, SIAM J. Optim. 7 (1997), no. 4, 951-965. https://doi.org/10.1137/S1052623495279797
  14. P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2000), no. 2, 431-446. https://doi.org/10.1137/S0363012998338806
  15. R. U. Verma, Rockafellar’s theorem on linear convergence and A-proximal point algorithm, DCDIS: Dynamics of Continuous, Discrete and Impulsive Systems (in press).
  16. U. Verma, Sensitivity analysis for generalized strongly monotone variational inclusions based on the $(A,{\eta})$-resolvent operator technique, Appl. Math. Lett. 19 (2006), no. 12, 1409-1413. https://doi.org/10.1016/j.aml.2006.02.014
  17. R. U. Verma, A-monotonicity and its role in nonlinear variational inclusions, J. Optim. Theory Appl. 129 (2006), no. 3, 457-467. https://doi.org/10.1007/s10957-006-9079-7
  18. R. U. Verma, General system of A-monotone nonlinear variational inclusion problems with applications, J. Optim. Theory Appl. 131 (2006), no. 1, 151-157. https://doi.org/10.1007/s10957-006-9133-5
  19. R. U. Verma, A-monotone nonlinear relaxed cocoercive variational inclusions, Cent. Eur. J. Math. 5 (2007), no. 2, 386-396. https://doi.org/10.2478/s11533-007-0005-5
  20. R. U. Verma, General system of $(A,{\eta})$-monotone variational inclusion problems based on generalized hybrid iterative algorithm, Nonlinear Anal. Hybrid Syst. 1 (2007), no. 3, 326-335. https://doi.org/10.1016/j.nahs.2006.07.002
  21. R. U. Verma, Approximation solvability of a class of nonlinear set-valued variational inclusions involving $(A,{\eta})$- monotone mappings, J. Math. Anal. Appl. 337 (2008), no. 2, 969-975. https://doi.org/10.1016/j.jmaa.2007.01.114
  22. R. U. Verma, On a class of nonlinear variational inequalities involving partially relaxed monotone and partially strongly monotone mappings, Math. Sci. Res. Hot-Line 4 (2000), no. 2, 57-65.
  23. R. U. Verma, Averaging techniques and cocoercively monotone mappings, Math. Sci. Res. J. 10 (2006), no. 3, 79-82.
  24. R. U. Verma, Rockafellar’s celebrated theorem based on A-maximal monotonicity design, Appl. Math. Lett. 21 (2008), no. 4, 355-360. https://doi.org/10.1016/j.aml.2007.05.004
  25. R. U. Verma, On the generalized proximal point algorithm with applications to inclusion problems, J. Ind. Manag. Optim. 5 (2009), no. 2, 381-390. https://doi.org/10.3934/jimo.2009.5.381
  26. R. U. Verma, General implicit variational inclusion problems involving A-maximal relaxed accretive mappings in Banach spaces, Archivum Mathematicum 45 (2009), no. 3, 171-177.
  27. R. U. Verma, Generalized maximal monotonicity models and their applications to nonlinear variational inclusion problems and beyond, Int. J. Optim. Theory Methods Appl. 1 (2009), no. 2, 182-206.
  28. R. U. Verma, New proximal point algorithms based on RMM models for nonlinear variational inclusion problems, Adv. Nonlinear Var. Inequal. 12 (2009), no. 2, 91-102.
  29. R. U. Verma, Generalized first-order nonlinear evolution equations and generalized Yosida approximations based on H-maximal monotonicity frameworks, Electron. J. Differential Equations 2009 (2009), No. 85, 16 pp.
  30. R. U. Verma, A new relaxed proximal point procedure and applications to nonlinear variational inclusions, Comput. Math. Appl. 58 (2009), no. 8, 1631-1635. https://doi.org/10.1016/j.camwa.2009.07.011
  31. R. U. Verma, General class of implicit inclusion problems based on A-maximal relaxed monotone models with applications, Journal of Numerical Mathematics and Stochastics 1 (2009), no. 1, 24-32.
  32. R. U. Verma, The generalized relaxed proximal point algorithm involving A-maximal relaxed accretive mappings with applications to Banach spaces, Mathematical and Computer Modelling 50 (2009), no. 7-8, 1026-1032. https://doi.org/10.1016/j.mcm.2009.04.012
  33. H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), no. 1, 240-256. https://doi.org/10.1112/S0024610702003332
  34. H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127-1138. https://doi.org/10.1016/0362-546X(91)90200-K
  35. E. Zeidler, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York, 1986.
  36. E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New York, 1990.
  37. E. Zeidler, Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, New York, 1990.
  38. E. Zeidler, Nonlinear Functional Analysis and its Applications III, Springer-Verlag, New York, New York, 1984

Cited by

  1. Graph convergence for the H(·,·)-accretive operator in Banach spaces with an application vol.217, pp.22, 2011, https://doi.org/10.1016/j.amc.2011.03.119