A NOTE OF WEIGHTED COMPOSITION OPERATORS ON BLOCH-TYPE SPACES

Songxiao Li and Jizhen Zhou

ABSTRACT. We obtain a new criterion for the boundedness and compactness of the weighted composition operators ψC_{φ} from $\mathcal{B}^{\alpha}(0 < \alpha < 1)$ to \mathcal{B}^{β} in terms of the sequence $\{\psi \varphi^n\}$. An estimate for the essential norm of ψC_{φ} is also given.

1. Introduction

Denote by $H(\mathbb{D})$ the space of all analytic functions on the unit disk $\mathbb{D} = \{z : |z| < 1\}$ in the complex plane. Let $0 < \alpha < \infty$. An $f \in H(\mathbb{D})$ is said to belong to Bloch-type spaces(or α -Bloch spaces), denoted by \mathcal{B}^{α} , if

$$||f||_{\alpha} = \sup_{z \in \mathbb{D}} |f'(z)| (1 - |z|^2)^{\alpha} < \infty.$$

The classical Bloch space \mathcal{B} is just \mathcal{B}^1 . It is clear that \mathcal{B}^{α} is a Banach space with the norm $||f||_{\mathcal{B}^{\alpha}} = |f(0)| + ||f||_{\alpha}$. See [1, 15, 16] for the theory of Bloch-type spaces.

Let X and Y be Banach spaces of analytic functions on \mathbb{D} , $\psi \in H(\mathbb{D})$ and let φ be an analytic self mapping of \mathbb{D} . The weighted composition operator with symbols ψ and φ from X to Y is the operator ψC_{φ} defined by

$$\psi C_{\varphi} f = M_{\psi} C_{\varphi} f = \psi (f \circ \varphi) \text{ for } f \in X,$$

where M_{ψ} denotes the multiplication operator with symbol ψ and C_{φ} denotes the composition operator with symbol φ . A basic problem concerning composition operators on various Banach function spaces is to relate the operator theoretic properties of C_{φ} to the function theoretic properties of the symbol φ , which attracted a lots of attention recently, the reader can refer to [3].

Recall that the essential norm of a operator T between X and Y is the distance to the compact operators K, that is $||T||_e^{X \to Y} = \inf\{||T - K|| : K \text{ is compact}\}$, where $|| \cdot ||$ is the operator norm. It is easy to see that $||T||_e^{X \to Y} = 0$ if and only if T is compact.

O2015Korean Mathematical Society

Received November 19, 2014.

²⁰¹⁰ Mathematics Subject Classification. 47B33, 30H30.

Key words and phrases. weighted composition operator, Bloch-type space, essential norm.

It is well known that the composition operator is automatically bounded on the Bloch space by Schwarz-Pick Lemma. The compactness of the composition operator on the Bloch space was characterized in [7]. In [13], Wulan, Zheng and Zhu obtained a new characterization for the compactness of the composition operator acting on the Bloch space as follows:

Theorem A. Let φ be an analytic self-map of \mathbb{D} . Then C_{φ} is compact on the Bloch space if and only if

$$\lim_{n \to \infty} \|\varphi^n\|_{\mathcal{B}} = 0.$$

The boundedness and the compactness of composition operators on Bloch type spaces was given in [5] by Lou. In [14], Zhao extended Theorem A to Bloch-type spaces. Among other results, he proved the following result.

Theorem B. Let $0 < \alpha, \beta < \infty$, and φ be a self-map of \mathbb{D} . Then the essential norm of composition operator $C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is

$$\|C_{\varphi}\|_{e}^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} = \left(\frac{e}{2\alpha}\right)^{\alpha} \limsup_{n \to \infty} n^{\alpha-1} \|\varphi^{n}\|_{\beta}.$$

In [10], Ohno, Stroethoff and Zhao studied the boundedness and compactness of weighted composition operators on Bloch-type spaces. The essential norm of weighted composition operators on Bloch-type spaces are given in [6]. In [8], Manhas and Zhao gave an estimate for the essential norm of $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$. Especially, when $0 < \alpha < 1$, they obtained the following result.

Theorem C. Suppose $0 < \alpha < 1$ and $0 < \beta < \infty$ and suppose that $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded. Then the essential norm of composition operator $C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is

$$\|\psi C_{\varphi}\|_{e}^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} = \left(\frac{e}{2\alpha}\right)^{\alpha} \limsup_{n \to \infty} n^{\alpha-1} \|I_{\psi}(\varphi^{n})\|_{\beta},$$

where

$$I_{\psi}f(z) = \int_0^z f'(\zeta)\psi(\zeta)d\zeta.$$

Motivated by Theorems A, B and C, in this work we show that $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded (respectively, compact) if and only if the sequence $\left(\frac{\|\psi\varphi^n\|_{\beta}}{\|z^n\|_{\alpha}}\right)_{n=1}^{\infty}$ is bounded (respectively, convergent to 0 as $n \to \infty$) when $0 < \alpha < 1$. Moreover, we give the exact essential norm for the operators ψC_{φ} .

2. Boundedness of ψC_{φ} on Bloch-type spaces

In this section, we give a characterization for the boundedness of ψC_{φ} : $\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ when $0 < \alpha < 1$. For this purpose, we need the following result which is given in [10].

Lemma 2.1. Let $0 < \alpha < 1$, $0 < \beta < \infty$, $\psi \in H(\mathbb{D})$ and let φ be an analytic self-map of \mathbb{D} . Then $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded if and only if $\psi \in \mathcal{B}^{\beta}$ and

$$\sup_{z\in\mathbb{D}}|\psi(z)|\frac{(1-|z|^2)^{\beta}}{(1-|\varphi(z)|^2)^{\alpha}}|\varphi'(z)|<\infty.$$

The boundedness of ψC_{φ} : $\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ implies that $\psi \in \mathcal{B}^{\beta}$ if we choose $f = 1 \in \mathcal{B}^{\alpha}$. So we always assume that $\psi \in \mathcal{B}^{\beta}$. We are now ready to state and prove the main results in this section.

Theorem 2.2. Let $0 < \alpha < 1$, $0 < \beta < \infty$, $\psi \in H(\mathbb{D})$ and let φ be an analytic self-map of \mathbb{D} . Assume that $\psi \in \mathcal{B}^{\beta}$, then $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded if and only if

(1)
$$\sup_{n \in \mathbb{N}} \frac{\|\psi\varphi^n\|_{\beta}}{\|z^n\|_{\alpha}} < \infty.$$

Proof. Assume that $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded. Since for any nonnegative integer n, the sequence $f_n(z) = z^n / ||z^n||_{\alpha}$ is bounded in \mathcal{B}^{α} , we get

$$\frac{\|\psi\varphi^n\|_{\beta}}{\|z^n\|_{\alpha}} = \left\|\psi C_{\varphi}\left(\frac{z^n}{\|z^n\|_{\alpha}}\right)\right\|_{\beta} \le \|\psi C_{\varphi}\|_{\mathcal{B}^{\alpha}\to\mathcal{B}^{\beta}} < \infty.$$

The desired result follows. Now we assume that (1) holds. Let $M := \sup_{n \in \mathbb{N}} \frac{\|\psi \varphi^n\|_{\beta}}{\|z^n\|_{\alpha}}$. For $n \ge 2$, we define $\mathbb{D} = \{z \in \mathbb{D} : r_n \le |\varphi(z)| \le r_{n+1}\},\$

$$\mathbb{D}_n = \{ z \in \mathbb{D} : r_n \le |\varphi(z)| \le r_{n+1} \},$$

where $r_n = \sqrt{\frac{n-1}{n-1+2\alpha}}$. Fix an integer N > 2. For $|\varphi(z)| \leq r_N$, by the product rule, we have

(2)
$$\frac{(1-|z|^2)^{\beta}|\psi(z)\varphi'(z)|}{(1-|\varphi(z)|^2)^{\alpha}} \le \frac{(1-|z|^2)^{\beta}(|(\psi\varphi)'(z)|+|\psi'(z)\varphi(z)|)}{(1-r_N^2)^{\alpha}} \le \left(\frac{N-1+2\alpha}{2\alpha}\right)^{\alpha}(\|\psi\varphi\|_{\beta}+\|\psi\|_{\beta}) < \infty$$

Note that for $n \in \mathbb{N}$ and $0 < \alpha < 1$,

$$||z^{n}||_{\alpha} = ||z^{n}||_{\mathcal{B}^{\alpha}} = \max_{z \in \mathbb{D}} n|z^{n-1}|(1-|z|^{2})^{\alpha}$$
(3)
$$= n\left(\frac{2\alpha}{n-1+2\alpha}\right)^{\alpha} \left(\frac{n-1}{n-1+2\alpha}\right)^{(n-1)/2} = n(1-r_{n}^{2})^{\alpha}r_{n}^{n-1},$$

the max is attained at any point on the circle with radius r_n . For $|\varphi(z)| > r_N$, there exists $n \ge N$ such that $z \in \mathbb{D}_n$. So

$$\begin{split} \frac{(1-|z|^2)^\beta |\psi(z)\varphi'(z)|}{(1-|\varphi(z)|^2)^\alpha} &= \frac{(1-|z|^2)^\beta |\psi(z)\varphi(z)^{n-1}\varphi'(z)| \|z^n\|_\alpha}{(1-|\varphi(z)|^2)^\alpha |\varphi(z)|^{n-1} \|z^n\|_\alpha} \\ &\leq \frac{(1-|z|^2)^\beta |\psi(z)\varphi(z)^{n-1}\varphi'(z)|n(1-r_n^2)^\alpha r_n^{n-1}}{(1-r_{n+1}^2)^\alpha r_n^{n-1} \|z^n\|_\alpha} \end{split}$$

(4)
$$\leq 2^{\alpha} \frac{(1-|z|^2)^{\beta} \left[|(\psi\varphi^n)'(z)| + |\psi'(z)\varphi^n(z)| \right]}{\|z^n\|_{\alpha}}$$
$$\leq 2^{\alpha} \frac{\|\psi\varphi^n\|_{\beta} + \|\psi\|_{\beta}}{\|z^n\|_{\alpha}} \leq 2^{\alpha} \left(M + \frac{\|\psi\|_{\beta}}{\|z^n\|_{\alpha}}\right) < \infty,$$

where we apply the inequality $1 - r_n^2 < 2(1 - r_{n+1}^2)$, $n \ge 2$ and the fact that $||z^n||_{\alpha} \to \infty$ as $n \to \infty$ when $0 < \alpha < 1$. From (2), (4) and Lemma 2.1, we deduce that ψC_{φ} is bounded from \mathcal{B}^{α} into \mathcal{B}^{β} .

Let $\psi \equiv 1$. We get the following result, which appeared in Theorem 2.1 of [14].

Corollary 2.3. Let $0 < \alpha < 1$, $0 < \beta < \infty$ and let φ be an analytic self-map of \mathbb{D} . The $C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded if and only if

$$\sup_{n\in\mathbb{N}}\frac{\|\varphi^n\|_\beta}{\|z^n\|_\alpha}<\infty$$

3. Essential norm of ψC_{φ} on Bloch-type spaces

The following criterion for compactness follows by a standard argument similar, for example, to that outlined in Proposition 3.11 of [3].

Lemma 3.1. Let $0 < \alpha < 1$, $0 < \beta < \infty$, $\psi \in H(\mathbb{D})$ and let φ be an analytic self-map of \mathbb{D} . The operator $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is compact if and only if for any bounded sequence $\{f_n\}_{n \in \mathbb{N}}$ in \mathcal{B}^{α} which converges to zero uniformly on compact subsets of \mathbb{D} , we have $\|\psi C_{\varphi} f_n\|_{\mathcal{B}^{\beta}} \to 0$ as $n \to \infty$.

Denote by $K_r f(z) = f(rz)$ for $r \in (0, 1)$. Then K_r is a compact operator on the space \mathcal{B}^{α} for $\alpha > 0$. It is easy to see that $||K_r|| \leq 1$. Let I denote the identity operator. The following result can be found in [6].

Lemma 3.2. Let $0 < \alpha < 1$. There is a sequence $\{r_k\}$, with $0 < r_k < 1$ tending to 1, such that the compact operator $L_n = \frac{1}{n} \sum_{k=1}^n K_{r_k}$ on \mathcal{B}_0^{α} satisfies

- (i) For any $t \in (0,1)$, $\lim_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \le 1} \sup_{|z| \le t} |((I L_n)f)'(z)| = 0.$
- (ii) $\lim_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \le 1} \sup_{z \in \mathbb{D}} |(I L_n)f(z)| = 0.$
- (iii) $\limsup_{n \to \infty} \|I L_n\| \le 1.$

Furthermore, these statements holds as well for the sequence of biadjoints L_n^{**} (which is the same form as L_n) on \mathcal{B}^{α} .

Theorem 3.3. Let $0 < \alpha < 1$, $0 < \beta < \infty$, $\psi \in H(\mathbb{D})$ and let φ be an analytic self-map of \mathbb{D} . Suppose that $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded, then the essential norm of $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is

(5)
$$\|\psi C_{\varphi}\|_{e}^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} = \limsup_{n \to \infty} \frac{\|\psi \varphi^{n}\|_{\beta}}{\|z^{n}\|_{\alpha}}.$$

Proof. By the assumption that ψC_{φ} is bounded from \mathcal{B}^{α} into \mathcal{B}^{β} , we easily get that $\|\psi \varphi\|_{\beta} < \infty$ and $\|\psi\|_{\beta} < \infty$. Moreover, $\sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |\psi(z)\varphi'(z)| < \infty$.

First, we prove that (5) holds when $\sup_{z \in \mathbb{D}} |\varphi(z)| < 1$. Assume $\sup_{z \in \mathbb{D}} |\varphi(z)| < 1$, then there is a number $\delta \in (0, 1)$ such that $\sup_{z \in \mathbb{D}} |\varphi(z)| < \delta$. Choose a bounded sequence $\{f_n\}_{n \in \mathbb{N}}$ in \mathcal{B}^{α} which converges to zero uniformly on compact subset of \mathbb{D} . Then $\{f'_n\}_{n \in \mathbb{N}}$ also converges to zero on compact subsets of \mathbb{D} as $n \to \infty$. It follows that

$$\begin{split} \lim_{n \to \infty} \|\psi C_{\varphi} f_n\|_{\mathcal{B}^{\beta}} &= \lim_{n \to \infty} \left(|\psi(0) f_n(\varphi(0))| + \|\psi C_{\varphi} f_n\|_{\beta} \right) \\ &= \lim_{n \to \infty} \sup_{z \in \mathbb{D}} |\psi'(z) f_n(\varphi(z)) + \psi(z) f'_n(\varphi(z)) \varphi'(z)| (1 - |z|^2)^{\beta} \\ &\leq \lim_{n \to \infty} \left(\|\psi\|_{\beta} \sup_{|z| \le \delta} |f_n(z)| + \sup_{|z| \le \delta} |f'_n(z)| \sup_{z \in \mathbb{D}} |\psi \varphi'| (1 - |z|^2)^{\beta} \right) \\ &= 0. \end{split}$$

Then the operator $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is compact by Lemma 3.1. This gives that $\|\psi C_{\varphi}\|_{e}^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} = 0$. On the other hand,

$$\begin{split} &\lim_{n\to\infty} \sup_{n\to\infty} \frac{\|\psi\varphi^n\|_{\beta}}{\|z^n\|_{\alpha}} \\ &= \limsup_{n\to\infty} \sup_{z\in\mathbb{D}} \frac{(1-|z|^2)^{\beta} |\psi'(z)\varphi^n(z) + n\psi(z)\varphi^{n-1}(z)\varphi'(z)|}{\|z^n\|_{\alpha}} \\ &\leq \limsup_{n\to\infty} \sup_{z\in\mathbb{D}} \frac{(1-|z|^2)^{\beta} (|\psi'(z)\varphi^n(z)| + n|\psi(z)\varphi^{n-1}(z)\varphi'(z)|)}{\|z^n\|_{\alpha}} \\ &\leq \limsup_{n\to\infty} \left(\frac{\|\psi\|_{\beta}\delta^n}{\|z^n\|_{\alpha}} + \sup_{z\in\mathbb{D}} \frac{n|(\psi\varphi)'(z) - \psi'(z)\varphi(z)|\delta^{n-1}}{\|z^n\|_{\alpha}} (1-|z|^2)^{\beta}\right) \\ &\leq \limsup_{n\to\infty} \frac{\|\psi\|_{\beta}\delta^n + n\|\psi\|_{\beta}\delta^n + n\|\psi\varphi\|_{\beta}\delta^{n-1}}{\|z^n\|_{\alpha}} = 0. \end{split}$$

Thus, when $\sup_{z\in\mathbb{D}}|\varphi(z)|<1,$ we have

$$\|\psi C_{\varphi}\|_{e}^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} = \limsup_{n \to \infty} \frac{\|\psi \varphi^{n}\|_{\beta}}{\|z^{n}\|_{\alpha}} = 0.$$

Next, we prove that (5) holds when $\sup_{z \in \mathbb{D}} |\varphi(z)| = 1$.

We first give the lower estimate for the essential norm. Choose the sequence of function $f_n(z) = z^n / ||z^n||_{\alpha}$, $n \in \mathbb{N}$. Then $||f_n||_{\mathcal{B}^{\alpha}} = 1$, and f_n converges to zero weakly on \mathcal{B}^{α} as $n \to \infty$. Thus we have $\lim_{n\to\infty} ||Kf_n||_{\mathcal{B}^{\alpha}} = 0$ for any given compact operator K on \mathcal{B}^{α} . The basic inequality gives that

$$\|\psi C_{\varphi} - K\|^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} \ge \|(\psi C_{\varphi} - K)f_n\|_{\mathcal{B}^{\beta}} \ge \|\psi C_{\varphi}f_n\|_{\mathcal{B}^{\beta}} - \|Kf_n\|_{\mathcal{B}^{\beta}}.$$

Thus we obtain that

$$\|\psi C_{\varphi} - K\|^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} \ge \limsup_{n \to \infty} \|\psi C_{\varphi} f_n\|_{\mathcal{B}^{\beta}} \ge \limsup_{n \to \infty} \|\psi C_{\varphi} f_n\|_{\beta}.$$

So we have

$$\|\psi C_{\varphi}\|_{e}^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} = \inf_{K} \|\psi C_{\varphi} - K\| \ge \limsup_{n \to \infty} \frac{\|\psi \varphi^{n}\|_{\beta}}{\|z^{n}\|_{\alpha}}.$$

Next, still under the assumption that $\sup_{z\in\mathbb{D}} |\varphi(z)| = 1$, we give the upper estimate for the essential norm. Let L_n be the sequence of operators given in Lemma 3.2. Since L_n is compact on \mathcal{B}^{α} and $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is bounded, then $\psi C_{\varphi} L_n : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is also compact. Hence

$$\begin{aligned} \|\psi C_{\varphi}\|_{e}^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} &\leq \limsup_{n \to \infty} \|\psi C_{\varphi} - \psi C_{\varphi} L_{n}\|_{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} \\ &= \limsup_{n \to \infty} \|\psi C_{\varphi} (I - L_{n})\|_{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} \\ &= \limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \leq 1} \|\psi C_{\varphi} (I - L_{n}) f\|_{\mathcal{B}^{\beta}} \\ &= I_{1} + I_{2}, \end{aligned}$$

where

$$I_1 = \limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \le 1} |\psi(0)((I - L_n)f)(\varphi(0))|$$

and

$$I_2 = \limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \le 1} \sup_{z \in \mathbb{D}} |(\psi(z)((I - L_n)f(\varphi(z))))'|(1 - |z|^2)^{\beta}.$$

It follows from Lemma 3.2 that $I_1 = 0$.

Let k be the smallest positive integer such that $\mathbb{D}_k \neq \emptyset$. Since $\sup_{z \in \mathbb{D}} |\varphi(z)| = 1$, \mathbb{D}_n is not empty for every integer $n \geq k$ and $\mathbb{D} = \bigcup_{n=k}^{\infty} \mathbb{D}_n$. Then we have that $I_2 \leq I_{21} + I_{22} + I_{23}$, where

$$I_{21} = \limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \le 1} \sup_{z \in \mathbb{D}} |\psi'(z)|| ((I - L_n)f)(\varphi(z))|(1 - |z|^2)^{\beta},$$

$$I_{22} = \limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \le 1} \sup_{N \le i} \sup_{z \in \mathbb{D}_{i}} |\psi(z)((I - L_{n})f)'(\varphi(z))\varphi'(z)|(1 - |z|^{2})^{\beta}$$

and

$$I_{23} = \limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \le 1} \sup_{k \le i \le N-1} \sup_{z \in \mathbb{D}_{i}} |\psi(z)((I - L_{n})f)'(\varphi(z))\varphi'(z)|(1 - |z|^{2})^{\beta}.$$

Here N is a positive integer determined as follows.

From (3), for any given $\epsilon > 0$, there exists a positive integer N such that

(6)
$$\frac{\|\psi\|_{\beta}}{\|z^n\|_{\mathcal{B}^{\alpha}}} < \epsilon \text{ and } \frac{(1-r_n^2)^{\alpha}}{(1-r_{n+1}^2)^{\alpha}} < 1+\epsilon,$$

when $n \geq N$.

For such N it follows by Lemma 3.2 that

$$I_{22} = \limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \le 1} \sup_{N \le i} \sup_{z \in \mathbb{D}_{i}} |\psi(z)((I - L_{n})f)'(\varphi(z))\varphi'(z)|(1 - |z|^{2})^{\beta}$$

$$\leq \limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \le 1} \|(I - L_{n})f\|_{\alpha} \sup_{N \le i} \sup_{z \in \mathbb{D}_{i}} \frac{|\psi(z)\varphi'(z)|}{(1 - |\varphi(z)|^{2})^{\alpha}} (1 - |z|^{2})^{\beta}$$

$$\leq \limsup_{n \to \infty} \|I - L_n\| \sup_{N \leq i \ z \in \mathbb{D}_i} \frac{|\psi(z)\varphi'(z)\varphi^{i-1}(z)| \|z^i\|_{\alpha}}{(1 - |\varphi(z)|^2)^{\alpha} |\varphi(z)|^{i-1} \|z^i\|_{\alpha}} (1 - |z|^2)^{\beta}$$

$$\leq \sup_{N \leq i \ z \in \mathbb{D}_i} \frac{i(1 - r_i^2)^{\alpha} r_i^{i-1} |\psi(z)\varphi'(z)\varphi^{i-1}(z)|}{(1 - r_{i+1}^2)^{\alpha} r_i^{i-1} \|z^i\|_{\alpha}} (1 - |z|^2)^{\beta}$$

$$\leq (1 + \epsilon) \sup_{N \leq i \ z \in \mathbb{D}_i} \frac{|(\psi\varphi^i)'(z)| + |\psi'(z)\varphi^i(z)|}{\|z^i\|_{\alpha}} (1 - |z|^2)^{\beta}$$

$$\leq (1 + \epsilon) \sup_{N \leq i} \frac{\|\psi\varphi^i\|_{\beta} + \|\psi\|_{\beta}}{\|z^i\|_{\alpha}}$$

$$(7) \qquad \leq (1 + \epsilon) \left(\sup_{N \leq i} \frac{\|\psi\varphi^i\|_{\beta}}{\|z^i\|_{\alpha}} + \epsilon \right).$$

Also it follows by Lemma 3.2 that

$$I_{23} = \limsup_{n \to \infty} \sup_{\|f\|_{B^{\alpha}} \le 1} \sup_{k \le i \le N-1} \sup_{z \in \mathbb{D}_{i}} |\psi(z)((I-L_{n})f)'(\varphi(z))\varphi'(z)|(1-|z|^{2})^{\beta}$$

$$= \limsup_{n \to \infty} \sup_{\|f\|_{B^{\alpha}} \le 1} \sup_{|\varphi(z)| \le r_{N}} |\psi(z)((I-L_{n})f)'(\varphi(z))| \cdot \sup_{z \in \mathbb{D}} |\psi(z)\varphi'(z)|(1-|z|^{2})^{\beta}$$

$$\leq \limsup_{n \to \infty} \sup_{\|f\|_{B^{\alpha}} \le 1} \sup_{|\varphi(z)| \le r_{N}} |((I-L_{n})f)'(\varphi(z))| \cdot \sup_{z \in \mathbb{D}} |\psi(z)\varphi'(z)|(1-|z|^{2})^{\beta}$$

(8)
$$= \limsup_{n \to \infty} \sup_{\|f\|_{B^{\alpha}} \le 1} \sup_{|w| \le r_{N}} |((I-L_{n})f)'(w)| \cdot \sup_{z \in \mathbb{D}} |\psi(z)\varphi'(z)|(1-|z|^{2})^{\beta} = 0.$$

By Lemma 3.2, we have

(9)

$$I_{21} \leq \|\psi\|_{\beta} \limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \leq 1} \sup_{z \in \mathbb{D}} |((I - L_n)f)(\varphi(z))|$$

$$\leq \|\psi\|_{\beta} \limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{B}^{\alpha}} \leq 1} \sup_{w \in \mathbb{D}} |((I - L_n)f)(w)| = 0.$$

It follows from (7), (8) and (9) that

(10)
$$I_2 < (1+\epsilon) \left(\sup_{N \le i} \frac{\|\psi\varphi^i\|_{\beta}}{\|z^i\|_{\alpha}} + \epsilon \right).$$

From (10) we obtain that

$$\|\psi C_{\varphi}\|_{e}^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} \leq I_{1} + I_{2} < (1+\epsilon) \left(\sup_{N \leq i} \frac{\|\psi \varphi^{i}\|_{\beta}}{\|z^{i}\|_{\alpha}} + \epsilon \right).$$

Since ϵ is arbitrary, it follows that

$$\|\psi C_{\varphi}\|_{e}^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} \leq \limsup_{i \to \infty} \frac{\|\psi \varphi^{i}\|_{\beta}}{\|z^{i}\|_{\alpha}}.$$

The proof is complete.

From Theorem 3.3, we obtain the following result.

Corollary 3.4. Let $0 < \alpha < 1$, $0 < \beta < \infty$, $\psi \in H(\mathbb{D})$ and let φ be an analytic self-map of \mathbb{D} . Suppose that $\psi \in \mathcal{B}^{\beta}$. Then $\psi C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is compact if and only if

$$\limsup_{n \to \infty} \frac{\|\psi \varphi^n\|_{\beta}}{\|z^n\|_{\alpha}} = 0.$$

Corollary 3.5. Let $0 < \alpha < 1$, $0 < \beta < \infty$ and let φ be an analytic self-map of \mathbb{D} . Then the essential norm of $C_{\varphi} : \mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}$ is

$$\|C_{\varphi}\|_{e}^{\mathcal{B}^{\alpha} \to \mathcal{B}^{\beta}} = \limsup_{n \to \infty} \frac{\|\varphi^{n}\|_{\beta}}{\|z^{n}\|_{\alpha}}.$$

Acknowledgment. This project was partially supported by the Macao Science and Technology Development Fund (No.083/2014/A2).

References

- J. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37.
- [2] M. Contreras and A. Hernandez-Diaz, Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 69 (2000), no. 1, 41–60.
- [3] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995.
- [4] S. Li and S. Stević, Weighted composition operators from Bergman-type spaces into Bloch spaces, Proc. Indian Acad. Sci. Math. Sci. 117 (2007), no. 3, 371–385.
- [5] Z. Lou, Composition operators on Bloch type spaces, Analysis 23 (2003), no. 1, 81–95.
- [6] B. Maccluer and R. Zhao, Essential norm of weighted composition operators between
- Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 4, 1437–1458.
 [7] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2679–2687.
- [8] J. Manhas and R. Zhao, New estimates of essential norms of weighted composition operators between Bloch type spaces, J. Math. Anal. Appl. 389 (2012), no. 1, 32–47.
- [9] A. Montes-Rodriguez, Weighted composition operators on weighted Banach spaces of analytic functions, J. London Math. Soc. 61 (2000), no. 3, 872–884.
- [10] S. Ohno, K. Stroethoff, and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191–215.
- [11] S. Ohno and R. Zhao, Weighted composition operators on the Bloch space, Bull. Austral. Math. Soc. 63 (2001), no. 2, 177–185.
- [12] S. Stević and R. Agarwal, Weighted composition operators from logarithmic Bloch-type spaces to Bloch-type spaces, J. Inequal. Appl. 2009 (2009), Art. ID 964814, 21 pp.
- [13] H. Wulan, D. Zheng, and K. Zhu, Compact composition operators on BMOA and the Bloch space, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3861–3868.
- [14] R. Zhao, Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc. 138 (2010), no. 7, 2537–2546.
- [15] K. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), no. 3, 1143–1177.
- [16] _____, Operator Theory in Function Spaces, Second edition, American Mathematical Society, Providence, 2007.

Songxiao Li Institute of System Engineering Macau University of Science and Technology Avenida Wai Long, Taipa, Macau *E-mail address*: jyulsx0163.com

JIZHEN ZHOU SCHOOL OF SCIENCE ANHUI UNIVERSITY OF SCIENCE AND TECHNOLOGY 232001, HUAINAN, ANHUI, P. R. CHINA *E-mail address*: hope189@163.com