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ENLARGING THE BALL OF

CONVERGENCE OF SECANT-LIKE METHODS

FOR NON-DIFFERENTIABLE OPERATORS

Ioannis K. Argyros and Hongmin Ren

Abstract. In this paper, we enlarge the ball of convergence of a unipara-
metric family of secant-like methods for solving non-differentiable opera-

tors equations in Banach spaces via using ω-condition and centered-like

ω-condition meantime as well as some fine techniques such as the affine
invariant form. Numerical examples are also provided.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x? of equation

(1.1) F (x) = 0,

where F is an operator defined on a convex subset Ω of a Banach space X with
values in a Banach space Y .

In general, the solutions of these equations can be rarely be found in closed
form. That is why most solution methods for these equations are usually it-
erative. If F is differentiable, the most known method is Newton’s method
[10]:

(1.2)

{
x0 given in Ω,
xn+1 = xn − F ′(xn)−1F (xn), n ≥ 0.

To avoid some disadvantages of Newton’s method, many Newton-like methods
have been proposed, see [2, 14]. If F is not differentiable, we cannot use the
derivative in the iterative methods. Then, we often use divided differences
[11] instead of derivatives. The best known method of this type is the Secant
method [1]:

(1.3)

{
x0, x−1 given in Ω,
xn+1 = xn − [xn−1, xn;F ]−1F (xn), n ≥ 0,
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where, [u, v;F ], u, v ∈ Ω is a first order divided difference [11], which is a
bounded linear operator from X to Y such that

(1.4) [u, v;F ](u− v) = F (u)− F (v).

In order to improve the Secant method in some way, Ref. [6] proposed a
family of secant-like methods:

(1.5)

 x0, x−1 given in Ω, λ ∈ [0, 1],
yn = λxn + (1− λ)xn−1, n ≥ 0,
xn+1 = xn − [yn, xn;F ]−1F (xn),

which are considered as a combination of the Secant method and Newton’s
method, since (1.5) is reduced to the Secant method (1.3) if λ = 0 and, provided
that F is differentiable, to Newton’s method if λ = 1, since yn = xn and
[yn, xn;F ] = F ′(xn). Note that in [6], the authors show that the higher the
value of λ ∈ [0, 1] is, the higher the speed of convergence of (1.5) is, so that the
speed of convergence is close to that of Newton’s method (1.2) when λ is close
to 1.

The study about convergence of iterative procedures is normally centered
on two types: semi-local and local convergence analysis. The semi-local con-
vergence matter is, based on the information around an initial point, to give
conditions ensuring the convergence of the iterative procedure. While the local
analysis is based on the information around the solution, to find estimates of
the radii of convergence ball.

A lot of works on the convergence of iterative methods including (1.2), (1.3)
and (1.5) have been given, see [1–6,8–16]. In the case of local convergence, F is
often supposed to be differentiable. Recently, Ref. [7] presents a new technique
to give an analysis of local convergence for the secant-like methods (1.5) when F
is non-differentiable. Two conditions are used to the local convergence analysis
in [7]:

(A1) Let x? be a solution of Eq. (1.1) and consider x̂ ∈ Ω with ‖x? − x̂‖ =
δ > 0 so that the operator [x?, x̂;F ]−1 exists with ‖[x?, x̂;F ]−1‖ ≤ γ;

(A2) ‖[x, y;F ] − [u, v;F ]‖ ≤ ω(‖x − u‖, ‖y − v‖), x, y, u, v ∈ Ω, where ω :
R+ × R+ → R+ is a continuous non-decreasing function in both arguments.

Some other conditions are also needed to ensure the convergence of (1.5),
see [7]. However, the main idea of [7] is the introduction of condition (A1).
Note that, based on conditions (A1), (A2) and some other conditions, the
convergence ball of (1.5) is given when F is non-differentiable.

In the present paper, we enlarge the ball of convergence of (1.5), provide
tighter error bounds on the distances ‖xn − x?‖ and an at least as precise
information on the location of the solution x?. We use the following new
ideas: (1) give the results in affine invariant form; (2) use ω-condition and
centered-like ω-condition meantime. Some other technique is also used in our
analysis. These advantages are obtained under the same computational cost,
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since in practice the computation of function ω involves the computation of
new functions ω0 and ω (see Section 2) as special cases.

The paper is organized as follows: Section 2 contains the local convergence
analysis of method (1.5) under our new conditions. The numerical examples
including favorable comparisons with earlier study [7] are presented in the
concluding Section 3.

2. Improved local convergence analysis of method (1.5)

We present the local convergence of method (1.5) in this section. Denote
B(x, r) as a ball centered at x and with radius r. Firstly, we assume that
there exists a first order of divided difference [x, y;F ] ∈ L(X,Y ), for all pair
of distinct points x, y ∈ Ω, where L(X,Y ) denotes the space of bounded linear
operators from X to Y , we suppose:

(C1) Let x? be a solution of Eq. (1.1) and consider x̂ ∈ Ω with ‖x? − x̂‖ =
δ > 0 so that the operator [x?, x̂;F ]−1 exists;

(C2) ‖[x?, x̂;F ]−1([x, y;F ] − [x?, x̂;F ])‖ ≤ ω0(‖x − x?‖, ‖y − x̂‖), x, y ∈ Ω,
where ω0 : R+ × R+ → R+ is a continuous non-decreasing function in both
arguments;

(C3) ‖[x?, x̂;F ]−1([x, y;F ] − [u, v;F ])‖ ≤ ω(‖x − u‖, ‖y − v‖), x, y, u, v ∈
Ω0 = Ω

⋂
B(x?, r0), where, r0 = sup{t ≥ 0, ω0(t, δ + t) < 1} ∈ (0,+∞) and

ω : R+×R+ → R+ is a continuous non-decreasing function in both arguments.
(C4) The equation

(2.1) ω(2(1− λ)t, t) + ω0(t, δ + t)− 1 = 0

has at least one positive real root, the smallest positive root of (2.1) is denoted
by R;

(C5) B(x?, R) ⊆ Ω and ω0(R, δ +R) < 1.

Lemma 2.1. Suppose the conditions (C1)-(C5) are satisfied. Then, for all
x, y ∈ B(x?, R), [x, y;F ]−1 exists and

(2.2) ‖[x, y;F ]−1[x?, x̂;F ]‖ ≤ 1

1− ω0(R, δ +R)
.

Proof. In view of (C1)-(C5), for any x, y ∈ B(x?, R), we have

(2.3)

‖I − [x?, x̂;F ]−1[x, y;F ]‖ = ‖[x?, x̂;F ]−1([x, y;F ]− [x?, x̂;F ])‖
≤ ω0(‖x? − x‖, ‖x̂− y‖)
≤ ω0(‖x? − x‖, ‖x̂− x?‖+ ‖x? − y‖)
≤ ω0(R, δ +R) < 1.

By the Banach lemma on invertible operators [2], the operator [x, y;F ]−1 exists
and (2.2) holds. �

Theorem 2.2. Let F : D ⊆ X → Y be a nonlinear operator on a non-empty
open convex domain Ω of a Banach space X with values in a Banach space
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Y . Suppose that conditions (C1)-(C5) are satisfied. Then, fixed λ ∈ [0, 1), the
sequence {xn} generated by method (1.5), is well-defined, and converges to a
solution x? of Eq. (1.1) for all pair of distinct x−1, x0 ∈ B(x?, R).

Proof. First, from the density of real number, there must exist a real number

R
′ ∈ (0, R) such that x−1, x0 ∈ B(x?, R

′
), since x−1, x0 ∈ B(x?, R). Second,

as λ ∈ [0, 1), then, y0 6= x0 and y0 ∈ B(x?, R
′
) ⊆ B(x?, R) ⊆ Ω. Therefore,

[y0, x0;F ] is well-defined and by Lemma 2.1, [y0, x0;F ]−1 exists. Moreover,
using the similar analysis as that in Lemma 2.1, we deduce that

(2.4) ‖[y0, x0;F ]−1[x?, x̂;F ]‖ ≤ 1

1− ω0(R
′
, δ +R

′
)
.

By the definition of R and 0 < R
′
< R, we have

(2.5) ω(2(1− λ)R
′
, R
′
) + ω0(R

′
, δ +R

′
) < 1,

that is to say, we have

(2.6)
ω(2(1− λ)R

′
, R
′
)

1− ω0(R
′
, δ +R

′
)
< 1.

Then, it follows
(2.7)

‖x1 − x?‖
= ‖x0 − x? − [y0, x0;F ]−1F (x0) + [y0, x0;F ]−1F (x?)‖
= |[y0, x0;F ]−1[x?, x̂;F ][x?, x̂;F ]−1([y0, x0;F ]− [x0, x

?;F ])(x0 − x?)‖
≤ 1

1−ω0(R
′
,δ+R

′
)
ω(‖y0 − x0‖, ‖x0 − x?‖)‖x0 − x?‖

= 1

1−ω0(R
′
,δ+R

′
)
ω((1− λ)‖x−1 − x0‖, ‖x0 − x?‖)‖x0 − x?‖

≤ 1

1−ω0(R
′
,δ+R

′
)
ω((1− λ)(‖x−1 − x?‖+ ‖x? − x0‖), ‖x0 − x?‖)‖x0 − x?‖

≤ ω(2(1−λ)R′
,R

′
)

1−ω0(R
′
,δ+R

′
)
‖x0 − x?‖

≤ ω(2(1−λ)R,R)

1−ω0(R,δ+R)
‖x0 − x?‖ = ‖x0 − x?‖ < R

′
,

which means x1 ∈ B(x?, R
′
).

By induction, for any integer n ≥ 0, xn+1 is well-defined, and

(2.8)

‖xn+1 − x?‖ ≤
ω(2(1− λ)R

′
, R
′
)

1− ω0(R
′
, δ +R

′
)
‖xn − x?‖

≤ · · · ≤
( ω(2(1− λ)R

′
, R
′
)

1− ω0(R
′
, δ +R

′
)

)n+1‖x0 − x?‖,

which shows that {xn} converges to x? linearly. �
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Remark 2.3. (a) The results are now given in affine invariant form. The advan-
tages of affine invariant results over non-affine invariant results are well-known,
see [4].

(b) If γ = 1, ω0 = ω = ω and Ω0 = Ω, then the new results coincide with the
ones of the paper of [7]. Otherwise, they constitute an improvement. Indeed,
we have that

(2.9) ω0(t, s) ≤ γω(t, s).

The new equation (2.1) (i.e., R) is more precise than the corresponding equation
(7) (i.e., R) in [7], if ω0 < γω or ω < γω. That is, we have

(2.10) R ≤ R.
Notice that the definition of function ω depends on ω0. This definition was not
possible before, when the old condition is only used. We also have that

(2.11) ω(t, s) ≤ γω(t, s),

since Ω0 ⊆ Ω. The new error bounds are also better, since we have

(2.12) ‖xn+1 − x?‖ ≤
ω(2(1− λ)R

′
, R
′
)

1− ω0(R
′
, δ +R

′
)
‖xn − x?‖,

instead of the less precise in the paper [7] given by

(2.13) ‖xn+1 − x?‖ ≤
γω(2(1− λ)R,R)

1− γω(R, δ +R)
‖xn − x?‖.

Concerning the uniqueness of the solution x?, we have the result:

Proposition 2.4. Suppose that the hypotheses of Theorem 2.2 are satisfied.
Moreover, suppose that there exists R1 ≥ R such that

(2.14) ω0(0, δ +R1) < 1

or

(2.15) ω0(R1, δ) < 1,

then x? is the only solution of equation F (x) = 0 in Ω1 = Ω
⋂
B(x?, R1).

Proof. Let y? ∈ Ω1 with F (y?) = 0. Define operator T = [x?, y?;F ]. Using
(2.3) for x = x?, y = y? and (2.14), we get that

(2.16)
‖I − [x?, x̂;F ]−1T‖ ≤ ω0(‖x? − x?‖, ‖x̂− x?‖+ ‖x? − y?‖)

≤ ω0(0, δ +R1) < 1,

so T−1 exists. Then, from the identity 0 = F (x?) − F (y?) = T (x? − y?),
we deduce that x? = y?. If (2.15) holds instead of (2.14), define operator
T1 = [y?, x?;F ], use (2.3) for x = y?, y = x? and (2.15) to arrive at

(2.17) ‖I − [x?, x̂;F ]−1T1‖ ≤ ω0(R1, δ) < 1,

so T−11 exists and from 0 = T1(y? − x?), we conclude again that x? = y?. �
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Remark 2.5. Uniqueness results were not given in [7]. But if they were condi-
tions (2.14) and (2.15) would have looked like

(2.18) γω(0, δ +R0) < 1

or

(2.19) γω(R0, δ) < 1

for R0 > R. Then, again in view of (2.9), we would have

(2.20) R0 ≤ R1.

That is the information on the uniqueness of the solution is at least as good
with our approach as the one in [7].

3. Numerical examples

We present two examples in this section.

Example 3.1. Let X = Y = R3, Ω = (−1, 1)3 and define F = (F1, F2, F3) on
Ω by

(3.1) F (x) = (ex1 − 1, e−12 x22 + x2, x3 + 1
10 |x3|)

T ,

where, x = (x1, x2, x3). Obviously, x? = (0, 0, 0) is a solution of Eq. (1.1) and
F is not differentiable at x?. We choose x̂ = (0, 0, 0.01). For u = (u1, u2, u3),
v = (v1, v2, v3) ∈ R3, we choose [u, v;F ] ∈ L(X,Y ) as follows [11]:

(3.2)
[u, v;F ]ij =

1

uj − vj
(Fi(u1, . . . , uj , vj+1, . . . , v3)

− Fi(u1, . . . , uj−1, vj , . . . , v3)), i, j = 1, 2, 3.

Let ‖u‖ = ‖u‖∞ = max{|u1|, |u2|, |u3|}. The corresponding norm on A ∈
R3 × R3 is ‖A‖ = max1≤i≤3

∑3
j=1 |aij |. So, we have

(3.3) [u, v;F ] =


eu1−ev1
u1−v1 0 0

0 e−1
2 (u2 + v2) + 1 0

0 0 1 + |u3|−|v3|
10(u3−v3)

 .

Then, we have

(3.4)

δ = ‖x? − x̂‖ = 0.01,

‖L−1‖ = ‖[x?, x̂;F ]−1‖ = ‖

 1 0 0
0 1 0
0 0 11

10

−1 ‖ = 1,

and for x = (x1, x2, x3), y = (y1, y2, y3), u = (u1, u2, u3), v = (v1, v2, v3) ∈ Ω,
the following estimates hold:

‖L−1([x, y;F ]− [x?, x̂;F ])‖(3.5)
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= ‖


ex1−ey1
x1−y1 − 1 0 0

0 e−1
2 (x2 + y2) 0

0 0 |x3|−|y3|
11(x3−y3) −

1
11

 ‖
≤ max{e− 1

2
(|x1|+ |y1|),

e− 1

2
(|x2|+ |y2|),

2

11
}

≤ e− 1

2
(‖x− x?‖+ ‖y − x̂‖) +

2

11

and
(3.6)
‖L−1([x, y;F ]− [u, v;F ])‖

= ‖


ex1−ey1
x1−y1 −

eu1−ev1
u1−v1 0 0

0 e−1
2 (x2 − u2 + y2 − v2) 0

0 0 |x3|−|y3|
11(x3−y3) −

|u3|−|v3|
11(u3−v3)

 ‖
≤ max{e

2
(|x1 − u1|+ |y1 − v1|),

e− 1

2
(|x2 − u2|+ |y2 − v2|),

2

11
}

≤ e

2
(‖x− u‖+ ‖y − v‖) +

2

11
.

Here, in (3.5) and (3.6), we use the following inequalities

(3.7)

|e
x1 − ey1
x1 − y1

− 1| = |
∫ 1

0

(etx1+(1−t)y1 − 1)dt|

= |
∫ 1

0

(tx1 + (1− t)y1 +
(tx1 + (1− t)y1)2

2!
+ · · · )dt|

= |
∫ 1

0

(tx1 + (1− t)y1)(1 +
tx1 + (1− t)y1

2!
+ · · · )dt|

≤
∫ 1

0

|tx1 + (1− t)y1|(1 +
1

2!
+ · · · )dt

≤ e− 1

2
(|x1|+ |y1|), x1, y1 ∈ Ω,

|e
x1 − ey1
x1 − y1

− eu1 − ev1
u1 − v1

|(3.8)

= |
∫ 1

0

(etx1+(1−t)y1 − (etu1+(1−t)v1)dt|

= |
∫ 1

0

∫ 1

0

(es(tx1+(1−t)y1)+(1−s)(tu1+(1−t)v1)

(tx1 + (1− t)y1 − tu1 − (1− t)v1))dsdt|

≤ e

2
(|x1 − u1|+ |y1 − v1|), x1, y1, u1, v1 ∈ Ω,
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and

(3.9) ||x3| − |y3|| ≤ |x3 − y3|, x3, y3 ∈ Ω.

In view of (3.5), (3.6) and the definition of r0 in (C3), we can choose

(3.10)

ω0(t, s) =
e− 1

2
(t+ s) +

2

11
,

r0 =
9
11 −

e−1
2 δ

e− 1
≈ 0.47116276,

ω(t, s) =
e

2
(t+ s) +

2

11
,

and Eq. (2.1) becomes

(3.11)

ω((2(1− λ)t, t) + ω0(t, δ + t)− 1

=
e

2
(2(1− λ) + 1)t+

2

11
+
e− 1

2
(2t+ δ) +

2

11
− 1 = 0,

which has the unique solution

(3.12) R =
7
11 −

e−1
2 δ

e( 5
2 − λ)− 1

.

Therefore, conditions (C1)-(C5) are satisfied and Theorem 2.2 applies.
Note that, if we use Theorem 2 in [7], we can choose

(3.13) δ = ‖x? − x̂‖ = 0.01, γ = ‖[x?, x̂;F ]−1‖ = 1, ω(t, s) =
e

2
(t+ s) +

1

5
,

since
(3.14)
‖[x, y;F ]− [u, v;F ]‖

= ‖


ex1−ey1
x1−y1 −

eu1−ev1
u1−v1 0 0

0 e−1
2 (x2 − u2 + y2 − v2) 0

0 0 |x3|−|y3|
10(x3−y3) −

|u3|−|v3|
10(u3−v3)

 ‖
≤ max{e

2
(|x1 − u1|+ |y1 − v1|),

e− 1

2
(|x2 − u2|+ |y2 − v2|),

1

5
}

≤ e

2
(‖x− u‖+ ‖y − v‖) +

1

5
, x, , y, u, v ∈ Ω.

Then, Eq. (7) in [7] becomes

(3.15)
e

2
(2(1− λ)t+ t) +

1

5
+
e

2
(2t+ δ) +

1

5
− 1 = 0,

which has the unique solution

(3.16) R =
3
5 −

e
2δ

e
2 (5− 2λ)

.

It is easy to verify that

(3.17) R > R
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Table 1. The comparison results of R and R for values of λ

λ R R
0.0 0.108316809 0.086291066
0.2 0.119529030 0.093794637
0.4 0.133330498 0.102727459
0.6 0.150735198 0.113540876
0.8 0.173366063 0.126898626
0.9 0.187436606 0.13482979
0.99 0.202206759 0.142866003

holds for each λ ∈ [0, 1). In Table 1, R and R are listed for some values of λ.
From this table, we can see that the ball of convergence for secant-like methods
(1.5) has been enlarged by using our new techniques.

Next we verify the results of uniqueness of the solution. Note that condition
(2.14) (or (2.15)) becomes

(3.18) ω0(0, δ +R1) =
e− 1

2
(δ +R1) +

2

11
< 1,

that is

(3.19) R1 <
9
11 −

e−1
2 δ

e−1
2

≈ 0.94232552.

So Proposition 2.4 applies and we can deduce that x? is the only solution of
Eq. (1.1) in Ω

⋂
B(x?, R1) provided that we choose R1 such that R1 ≥ R and

(3.19) is satisfied. Note also that if we use condition (2.18) (or (2.19)), we can
choose R0 such that R0 > R and

(3.20) R0 <
4
5 −

e
2δ

e
2

≈ 0.578607106.

Using (3.19) and (3.20), we see that (2.20) is true provided that we choose both
the biggest value to satisfy (3.19) and (3.20).

Example 3.2. Let us consider the boundary value problem (BVP) of second
order defined by the equation

(3.21)
d2x(s)

ds2
+ µ(x(s)) = 0

with the boundary conditions

(3.22) x(0) = x(1) = 0,

where µ is a given function. Many problems in various disciplines can be
brought in a form like BVP (3.21)-(3.22). As examples: in Physics they ap-
pear in connection to Newton’s and numerous other laws; in Biology, they
are related to population dynamics modes; in Chemistry they are related to
the concentrations of different reagents during a reaction. It is worth noticing
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that BVP (3.21)-(3.22) is equivalent to solving the Fredholm integral equation
[2, 6–8]:

x(s) = −
∫ 1

0

K(s, t)µ(x(t))dt,

where the kernel K is the Green’s function

K(s, t) =

{
(1− s)t, t ≤ s
s(1− t), s ≤ t

for each (s, t) ∈ [0, 1] × [0, 1]. In order for us to apply our results, we shall
discretize the BVP. Let p be a positive integer, set q = 1

1+p and ti = iq,

i = 0, 1, . . . , p+ 1. We use the popular standard approximation for the second
derivative given by

(3.23) x′′ ≈ xi−1 − 2xi + xi+1

q2
, i = 1, 2, . . . , p.

To obtain a scheme for determining number xi and the approximate values
x(ti) of the true solution at the points ti we want

(3.24) xi−1 − 2xi + xi+1 + q2µ(xi) = 0.

The unknowns are x1, x2, . . . , xp, since x0 and xp+1 are determined by the
boundary conditions (3.22). We usually simplify (3.24) by using the matrix
and vector notation: x= (x1, x2, . . . , xi)

T , v= (µ(x1), µ(x2), . . . , µ(xp))
T and

M =


−2 1 0 . . . 0
1 −2 1 . . . 0
0 1 −2 . . . 0
...

...
...

. . .
. . .

. . .
...

. . . . . . −2

 .

Using (3.24) and the preceding notation we can equivalently write

(3.25) F (x) = M(x) + q2(v),

where F : Ω ⊆ Rp −→ Rp and Ω = (−1, 1)3. Notice that if µ(x) is not linear in
x, equation

(3.26) F (x) = 0

can be solved by algebraic methods only in special cases. That explains why we
resort to iterative methods such as secant-like method (1.5) to solve equations
like (3.26). Let us specialize function µ by

(3.27) µ((x(s)) = e|(x(s)| − 1.

Then, operator F is not differentiable on Ω. Notice that the solution of BVP
is x∗(s) = 0 for each s ∈ [0, 1]. Choose p = 3, x = (x1, x2, x3)T , v =

(e|x1| − 1, e|x2| − 1, e|x3| − 1)T , x∗ = (0, 0, 0)T , (̂x = (0, 0,−0.01)T . Using the
divided difference, norm and notation introduced in Example 3.1 and along
the same lines, we get for α = 1.0050164, δ = ‖x∗ − x̂‖ = 0.01, γ = ‖L−1‖ =
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Table 2. The comparison results of R and R for values of λ

λ R R
0.0 0.169336765899 0.14368280109369
0.2 0.186865358007 0.15617695771053
0.4 0.208441842052 0.17105095368296
0.6 0.235651429556 0.18905631722854
0.8 0.271031324865 0.21129823690249
0.9 0.293028468158 0.22450437670889
0.99 0.31611934234 0.23788543227432

‖[x∗, x̂;F ]−1‖ =

∥∥∥∥∥∥∥
 1 0 0

0 1 0
0 0 α

−1
∥∥∥∥∥∥∥ =

∥∥∥∥∥∥
 1 0 0

0 1 0
0 0 α−1

∥∥∥∥∥∥ = 1.

Moreover, as in (3.5), (3.6), (3.14), respectively, we can set

w0(s, t) =
e− 1

2
(s+ t) + |α−1(1− α)| = e− 1

2
(s+ t) + 0.004991700279,

w̄(s, t) =
e

2
(s+ t) + 0.004991700279

and

w(s, t) =
e

2
(s+ t) + |1− α| = e

2
(s+ t) + 0.0050164.

Then, we get under our approach

R̄ =
2(1− 2|α−1(1− α)|) + (1− e)δ

(5− 2λ)e− 2
,

r0 =
2(1− |α−1(1− α)|) + (1− e)δ

2(e− 1)
,

R̄1 =
2(1− |α−1(1− α)|)− (1− e)δ

e− 1
and under the approach in [7]

R =
2(1− 2|α−1(1− α)|)− eδ

(5− 2λ)e
,

R0 =
2(1− |1− α|)− eδ

e
.

Notice that a parameter like r0 was not used in [7] but if it was (with w0

replaced by w in the definition of r̄0), then

r̄0 =
2(1− |1− α|)− eδ

2e
.

Then, again we obtain results for each λ ∈ [0, 1], since R̄ > R. See also Table
2.
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