• 제목/요약/키워드: norm inequality

검색결과 135건 처리시간 0.021초

GENERAL ITERATIVE ALGORITHMS FOR MONOTONE INCLUSION, VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS

  • Jung, Jong Soo
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.525-552
    • /
    • 2021
  • In this paper, we introduce two general iterative algorithms (one implicit algorithm and one explicit algorithm) for finding a common element of the solution set of the variational inequality problems for a continuous monotone mapping, the zero point set of a set-valued maximal monotone operator, and the fixed point set of a continuous pseudocontractive mapping in a Hilbert space. Then we establish strong convergence of the proposed iterative algorithms to a common point of three sets, which is a solution of a certain variational inequality. Further, we find the minimum-norm element in common set of three sets.

STUDY OF YOUNG INEQUALITIES FOR MATRICES

  • M. AL-HAWARI;W. GHARAIBEH
    • Journal of applied mathematics & informatics
    • /
    • 제41권6호
    • /
    • pp.1181-1191
    • /
    • 2023
  • This paper investigates Young inequalities for matrices, a problem closely linked to operator theory, mathematical physics, and the arithmetic-geometric mean inequality. By obtaining new inequalities for unitarily invariant norms, we aim to derive a fresh Young inequality specifically designed for matrices.To lay the foundation for our study, we provide an overview of basic notation related to matrices. Additionally, we review previous advancements made by researchers in the field, focusing on Young improvements.Building upon this existing knowledge, we present several new enhancements of the classical Young inequality for nonnegative real numbers. Furthermore, we establish a matrix version of these improvements, tailored to the specific characteristics of matrices. Through our research, we contribute to a deeper understanding of Young inequalities in the context of matrices.

SOME Lq INEQUALITIES FOR POLYNOMIAL

  • Chanam, Barchand;Reingachan, N.;Devi, Khangembam Babina;Devi, Maisnam Triveni;Krishnadas, Kshetrimayum
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권2호
    • /
    • pp.331-345
    • /
    • 2021
  • Let p(z)be a polynomial of degree n. Then Bernstein's inequality [12,18] is $${\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;n\;{\max_{{\mid}z{\mid}=1}{\mid}(z){\mid}}$$. For q > 0, we denote $${\parallel}p{\parallel}_q=\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}$$, and a well-known fact from analysis [17] gives $${{\lim_{q{\rightarrow}{{\infty}}}}\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}={\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p(z){\mid}$$. Above Bernstein's inequality was extended by Zygmund [19] into Lq norm by proving ║p'║q ≤ n║p║q, q ≥ 1. Let p(z) = a0 + ∑n𝜈=𝜇 a𝜈z𝜈, 1 ≤ 𝜇 ≤ n, be a polynomial of degree n having no zero in |z| < k, k ≥ 1. Then for 0 < r ≤ R ≤ k, Aziz and Zargar [4] proved $${\max\limits_{{\mid}z{\mid}=R}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;{\frac{nR^{{\mu}-1}(R^{\mu}+k^{\mu})^{{\frac{n}{\mu}}-1}}{(r^{\mu}+k^{\mu})^{\frac{n}{\mu}}}\;{\max\limits_{{\mid}z{\mid}=r}}\;{\mid}p(z){\mid}}$$. In this paper, we obtain the Lq version of the above inequality for q > 0. Further, we extend a result of Aziz and Shah [3] into Lq analogue for q > 0. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

구동기포화를 갖는 불확실한 시스템의 H2 제어 ([ H2 ] Control of Uncertain Systems with Actuator Saturation)

  • 최현철;홍석교;좌동경
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.1000-1006
    • /
    • 2007
  • This paper presents an LMI-based method to design a saturated state-feedback $H_2$ controller for uncertain systems with actuator saturation. Specifically, the paper proposes a sufficient condition such that the system under norm-bounded uncertainties and actuator saturation is asymptotically stable and the $H_2$-norm of the system has an upper-bound. The resulting condition is further utilized to solve a convex optimization problem specified in the context of $H_2$-norm minimization, whose solution yields a saturated $H_2$ controller. A numerical example is presented to show the effectiveness of the proposed method.

A NOTE ON HOFER'S NORM

  • Cho, Yong-Seung;Kwak, Jin-Ho;Yoon, Jin-Yue
    • 대한수학회보
    • /
    • 제39권2호
    • /
    • pp.277-282
    • /
    • 2002
  • We Show that When ($M,\;\omega$) is a closed, simply connected, symplectic manifold for all $\gamma\;\in\;\pi_1(Ham(M),\;id)$ the following inequality holds: $\parallel\gamma\parallel\;{\geq}\;sup_{\={x}}\;|A(\={x})|,\;where\;\parallel\gamma\parallel$ is the coarse Hofer's norm, $\={x}$ run over all extensions to $D^2$ of an orbit $x(t)\;=\;{\varphi}_t(z)$ of a fixed point $z\;\in\;M,\;A(\={x})$ the symplectic action of $\={x}$, and the Hamiltonian diffeomorphisms {${\varphi}_t$} of M represent $\gamma$.

CODING THEOREMS ON A GENERALIZED INFORMATION MEASURES.

  • Baig, M.A.K.;Dar, Rayees Ahmad
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제11권2호
    • /
    • pp.3-8
    • /
    • 2007
  • In this paper a generalized parametric mean length $L(P^{\nu},\;R)$ has been defined and bounds for $L(P^{\nu},\;R)$ are obtained in terms of generalized R-norm information measure.

  • PDF

RIGIDITY OF COMPLETE RIEMANNIAN MANIFOLDS WITH VANISHING BACH TENSOR

  • Huang, Guangyue;Ma, Bingqing
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1341-1353
    • /
    • 2019
  • For complete Riemannian manifolds with vanishing Bach tensor and positive constant scalar curvature, we provide a rigidity theorem characterized by some pointwise inequalities. Furthermore, we prove some rigidity results under an inequality involving $L^{\frac{n}{2}}$-norm of the Weyl curvature, the traceless Ricci curvature and the Sobolev constant.

SOLVABILITY AND BOUNDEDNESS FOR GENERAL VARIATIONAL INEQUALITY PROBLEMS

  • Luo, Gui-Mei
    • 대한수학회보
    • /
    • 제50권2호
    • /
    • pp.589-599
    • /
    • 2013
  • In this paper, we propose a sufficient condition for the existence of solutions to general variational inequality problems (GVI(K, F, $g$)). The condition is also necessary when F is a $g-P^M_*$ function. We also investigate the boundedness of the solution set of (GVI(K, F, $g$)). Furthermore, we show that when F is norm-coercive, the general complementarity problems (GCP(K, F, $g$)) has a nonempty compact solution set. Finally, we establish some existence theorems for (GNCP(K, F, $g$)).