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GENERAL ITERATIVE ALGORITHMS FOR MONOTONE
INCLUSION, VARIATIONAL INEQUALITY AND
FIXED POINT PROBLEMS

JONG SoO JUuNG

ABSTRACT. In this paper, we introduce two general iterative algorithms
(one implicit algorithm and one explicit algorithm) for finding a common
element of the solution set of the variational inequality problems for a con-
tinuous monotone mapping, the zero point set of a set-valued maximal
monotone operator, and the fixed point set of a continuous pseudocontrac-
tive mapping in a Hilbert space. Then we establish strong convergence
of the proposed iterative algorithms to a common point of three sets,
which is a solution of a certain variational inequality. Further, we find
the minimum-norm element in common set of three sets.

1. Introduction

Let H be a real Hilbert space with the inner product (-,-), and let C be a
nonempty closed convex subset of H. For the mapping T : C — C, we denote
the fixed point set of T' by Fiz(T), that is, Fiz(T) = {x € C : Tz = z}.

The monotone inclusion problem plays an essential role in the theory of
nonlinear analysis and optimization. Let B : H — 2 be a maximal monotone
operator. The monotone inclusion problem consists of finding a zero element
of B, that is, a solution of the inclusion problem:

(1.1) 0 € Bz.

The solution set of the problem (1.1) is denoted by B~'0. A classical method
for solving the problem is proximal point algorithm, proposed by Martinet [9]
and generalized by Rockafellar [11]. In some concrete cases including variational
inequalities, the monotone inclusion problem requires to find a zero of the sum
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of two monotone operator. That is, in the case of F = A + B, where A and B
are monotone operators, the problem is reduced to as follows:

find z € C such that 0 € F'z.

The solution set of this problem is denoted by F~!0.
Let A: C'— H be a nonlinear mapping. The variational inequality problem
is to find a w € C such that

(1.2) (v—u,Au) >0, YveC.

This problem is called Hartmann-Stampacchia variational inequality ([13]).
We denote the set of solutions of the variational inequality problem (1.2) by
VI(C,A). As we also know, variational inequality theory has emerged as an
important tool in studying a wide class of numerous problem in physics, opti-
mization, variational inequalities, minimax problem, Nash equilibrium problem
in noncooperative games and others.

A fixed point problem is to find a fixed point z of a nonlinear mapping T'
with property:

(1.3) zeC, Tz =z

In order to study the variational inequality problem (1.2) coupled with the
fixed point problem (1.3), many researchers have invented some iterative al-
gorithms for finding an element of VI(C, A) N Fix(T), where A and T are
nonlinear mappings. For instance, in case that A : C — H is an inverse-
strongly monotone mapping and 7' : C' — C' is a nonexpansive mapping, see
[5,6] and the references therein, and in case that A : C' — H is a continuous
monotone mapping and T : C' — C'is a continuous pseudocontractive mapping,
see [4,16,20].

In 2016, Jung [8] proposed an iterative algorithm for finding an element of
Fiz(T)NVI(C,A)NB~10, where T : C — C is a continuous pseudocontractive
mapping and A : C — H is a continuous monotone mapping.

Some iterative algorithms for finding an element of Fiz(T) N (A + B)~10
have been provided by several authors. For instance, in case that T : C — C'is
a nonexpansive mapping and A : C' — H is an inverse-strongly monotone map-
ping, see [15]. In [1], Afassinou et al. considered a ceratin iterative algorithm
for split monotone variational inclusion problem combined with variational in-
equality and fixed point problems in case that T': C'— C' is a demicontractive
mapping and A : C — H is an inverse-strongly monotone mapping.

In this paper, as a continuation of study in this direction, we introduce im-
plicit and explicit iterative algorithms for finding a common element of the
set Q= Fiz(T)NVI(C,A) N B~'0, where T : C — (' is a continuous pseu-
docontractive mapping, A : C — H is a continuous monotone mapping and
B : H — 2" is a maximal monotone operator. Then we establish strong con-
vergence of the sequences generated by the proposed iterative algorithms to
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a common point of three sets, which is a solution of a certain variational in-
equality. As a direct consequence, we find the unique minimum-norm element

of Q.

2. Preliminaries and lemmas

Let H be a real Hilbert space with the inner product (-,-) and the induced
norm || - ||, and let C' be a nonempty closed convex subset of H. A mapping A
of C into H is called monotone if

(x —y, Az — Ay) >0, Vx,yeC.

A mapping A of C into H is called a-inverse-strongly monotone (see [5]) if
there exists a positive real number « such that

(x —y, Az — Ay) > af| Az — Ay|]*, Vz,yeC.

Clearly, the class of monotone mappings includes the class of a-inverse-strongly
monotone mappings.
A mapping T of C into H is said to be pseudocontractive if

1T = Tyl* < llz — yI* + |(I = T)z = (I = T)y||*, Va,y€C,

and T is said to be k-strictly pseudocontractive (see [3]) if there exists a constant
k €10,1) such that

1T = Tyl? < llo = yl* + k(I = T)x = (I = T)yll*, Va,y€C,

where [ is the identity mapping. Note that the class of k-strictly pseudocon-
tractive mappings includes the class of nonexpansive mappings as a subclass.
That is, T' is nonexpansive (i.e., |Tx —Ty|| < ||z —yl, Vz,y € C) if and only if
T is O-strictly pseudocontractive. Clearly, the class of pseudocontractive map-
pings includes the class of strictly pseudocontractive mappings and the class
of nonexpansive mappings as a subclass. Moreover, this inclusion is strict (see
Example 5.7.1 and Example 5.7.2 in [2]).

Let B be a mapping of H into 2. The effective domain of B is denoted by
dom(B), that is, dom(B) = {z € H : Bx # (}. A set-valued mapping B is said
to be monotone on H if (x —y,u —v) > 0 for all z,y € dom(B), u € Bz, and
v € By. A monotone operator B on H is said to be mazimal if its graph is not
properly contained in the graph of any other monotone operator on H. For a
maximal monotone operator B on H and A > 0, we may define a single-valued
operator JZ = (I + AB)~' : H — dom(B), which is called the resolvent of B.
It is well known that B~'0 = {z € H : 0 € Bx} = Fiz(JP) for all A > 0 is
closed and convex and the resolvent J f is firmly nonexpansive, that is,

(2.1) T3z — TPyl < (@ —y, Ife — TFy), Yoy e H,
and that the resolvent identity

Iz 7
(2.2) Sl =J7? (Aa: + (1 - A)fo)
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holds for all A, x>0 and x € H.
In a real Hilbert space H, the following hold:

(2.3) = yll* = ll=lI” + [lyl1* — 2(z, y)
and
(2.4) ez + Byl* = allzl® + Bllyl> — aBllz — ylI* < allz|* + Bllyl?

for all z,y € H and «, g € (0,1) with o+ 5 =1.
We recall that

(i) a mapping V : C — H is said to be I-Lipschitzian if there exists a
constant [ > 0 such that

Ve =Vyl| <lllz—yl, Va,yedl;
(ii) a mapping G : C — H is said to be n-strongly monotone if there exists
a constant 1 > 0 such that
(Gz =~ Gy, —y) 2 nllz —yl?, Va,yeC.
We need the following lemmas for the proof of our main results.
Lemma 2.1 ([2]). In a real Hilbert space H, the following inequality holds:
o +yl? < lz)* +2(y, & +y), Va,ye H.

Lemma 2.2 ([14]). Let {x,} and {z,} be bounded sequences in a real Ba-
nach space E, and let {v,} be a sequence in [0, 1] which satisfies the following
condition:
0 < liminf vy, <limsup~y, < 1.
n—oo

n—oo

Suppose that Tp+1 = Yn&n + (1 — vn)2zn for alln > 1 and

limsup(||znt1 — 2nll = [[Tn1 — zal]) <0.
n— o0
Then limy, o0 ||2n — zn]| = 0.

Lemma 2.3 ([17]). Let {s,} be a sequence of nonnegative real numbers satis-
fying
Sp1 < (L= &n)sn +&nbn, Yn > 1,

where {£} and {0, } satisfy the following conditions:
(i) {én} - [07 1] and 22021 En = 005

(ii) Umsup,, . 6, <0 or 307 &uldn] < c0.

Then lim,,_, S, = 0.

The following lemmas are Lemma 2.3 and Lemma 2.4 of Zegeye [19], respec-
tively.
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Lemma 2.4 ([19]). Let C be a closed convex subset of a real Hilbert space H.
Let A : C — H be a continuous monotone mapping. Then, for v > 0 and
x € H, there exists z € C such that
1
(y—2,Az)+ —(y—2z,2—2)>0, VYyeC.
v

Forv>0andx € H, define A, : H— C by
1
A,,x:{zEC:(y—z,Az>+V<y—z,z—x>ZO, VyGC’}.

Then the following hold:
(i) A, is single-valued;
(ii) A, is firmly nonexpansive, that is,
|Ave — Ayy|® < (2 —y, Ay — Ayy),  Va,y € H;
(ifi) Fiz(A,) = VI(C,A);
(iv) VI(C, A) is a closed convex subset of C.
Lemma 2.5 ([19]). Let C be a closed convex subset of a real Hilbert space H.

Let T : C — H be a continuous pseudocontractive mapping. Then, for r > 0
and x € H, there exists z € C' such that

1
<y—z,Tz>—;<y—z,(1+r)z—m>SO, Yy € C.
Forr >0 andx € H, defineT,. : H— C by

1
Trx:{zeC:<y—z,Tz>—r(y—z,(1+7“)z—x>§0, VyEC}.

Then the following hold:
(i) T, is single-valued,
(ii) T, is firmly nonexpansive, that is,
||T7“T_T7‘yH2 < <x_y?TTx_TT >7 Vaj?yeH;
(iii) Fiz(T,) = Fiz(T);
(iv) Fiz(T) is a closed convex subset of C.

The following lemma is a variant of a Minty lemma (see [10]).

Lemma 2.6. Let C be a nonempty closed convex subset of a real Hilbert space
H. Assume that the mapping G : C — H is monotone and weakly continuous
along segments, that is, G(x+ty) — G(x) weakly ast — 0. Then the variational
inequality

zeC, (Gx,p—2)>0, VpeC,
is equivalent to the dual variational inequality

zeC, (Gpp—7x)>0, VpeC.

The following lemmas can be easily proven (see [18]), and therefore, we omit
their proof.
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Lemma 2.7. Let H be a real Hilbert space. LetV : H — H be an l-Lipschitzian
mapping with a constant 1 > 0, and let G : H — H be a k-Lipschitzian and
n-strongly monotone mapping with constants k,n > 0. Then for 0 < vl < un,

(UG =AV)z = (UG = V)y,x —y) = (un — )|z —yl?, Va,ye H
That is, uG — vV is strongly monotone with constant un — vl.

Lemma 2.8. Let H be a real Hilbert space. Let G : H — H be a k-Lipschitzian
and n-strongly monotone mapping with constants k > 0 and n > 0. Let 0 <
n< %Z and 0 <t < 1. Then I —tuG : H — H is a contractive mapping with

a constant 1 —tT, where 7 =1 — /1 — p(2n — pk?).

In the following, we write x,, — x to indicate that the sequence {z,} con-
verges weakly to x. x,, — x implies that {z, } converges strongly to z.

3. Iterative algorithms

Throughout the rest of this paper, we always assume the following;:

e H is a real Hilbert space with the inner product (-,-) and the induced

norm | - |

C' is a nonempty closed convex subset of H;

B : H — 2" is a maximal monotone operator with dom(B) C C;

B0 is the set of zero points of B, that is, B~10 = {z € H : 0 € Bz};

Jﬁ : H — dom(B) is the resolvent of B for \; € (0,00), t € (0,1), and

liminf;_,o Ay > 0;

e J? : H — dom(B) is the resolvent of B for A, € (0,00) and
liminf,, o A > 0;

e G :(C — Cis a k-Lipschitzian and n-strongly monotone mapping with
constants x, n > 0;

e V:C — C is an I-Lipschitzian mapping with constant I € [0, 00);

e Constants > 0 and v > 0 satisfy 0 < p < i—’; and 0 < vl < 7, where
T=1—/1—u(2n— px?);

e A:C — H is a continuous monotone mapping;

e VI(C, A) is the solution set of the variational inequality problem (1.2)
for A;

e T :(C — (Cis a continuous pseudocontractive mapping with Fiz(T) #
0;

e A, : H— C is a mapping defined by

1
Aytm:{zeC’:<y—z,Az>+(y—z7z—x>>0, VyEC}

4

for x € H and vy € (0,00),t € (0,1), liminf; o1 > 0;
e A, :H — Cis amapping defined by

1
Aynsr::{zeC:@—z,Az)—F(y—z,z—x)EO, VyEC’}

n
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for x € H and v, € (0,00), liminf, o vy, > 0;
e T,, : H— C'is a mapping defined by

1

T,xe=132€C:{Tz,y—2)——(y—2z,1+r)z—2x) <0, Vye
¢ T
t

for x € H and ry € (0,00), ¢t € (0,1), and lim inf; g r; > 0;
e T, : H — (Cis a mapping defined by

1
T, x= {zGC’: <Tz7y—z>—T—(y—z,(l—i—rn)z—m) <0, VyEC’}
for x € H and r,, € (0,00), and liminf,,_, o 7, > 0;
o O:=Fiz(T)NVI(C,A)N B~10 # 0.

By Lemma 2.4 and Lemma 2.5, we note that A,,, A, , T, and T, are
nonexpansive, VI(C, A) = Fiz(A,,) = Fiz(A,,) and Fiz(T,,) = Fiz(T,))
= Fix(T).

Now, we introduce the following iterative algorithm that generates a net
{z¢} in an implicit way:
(31) Ty = Gtxt + (1 — Gt)TT (t’yV&IZ‘t + (I — t/AG)J)\BtAyt.’I}t), te (0, 1),

where 0 < 0; < 1 for t € (0,1). For ¢t € (0,1), consider the following mapping
@ on C defined by

Qix =0ix+ (1 —0,)T,., vV + (I — t,uG)thAytx), vz € C.

t

Then @ is contractive. In fact, since T;.,, JAB and A,, are nonexpansive, for
, ¢ ,
x,y € C, we have

Qe — Quyl|

= (|6 + (1 — 0) T, (t7Va + (I — tpG)JE Ay, x)
— Oy + (1 =0T, (Y Vy + (I — WG)JEAWZJ))H

< Oljz -y

+ (1= 0T, (9 Ve + (I =tpG) 3 Ay, z) =Ty, (VVy + (I =tuG)J3 A y) |
< Ollz—yl+A=0)[[tnVa+(T—tuG) I Ay, z—(VVy + (I —tpG)JC ALy |
< Ofjz—yl|

+ (1=0) (t|VWVa = AVy| + (I = tpG) I3 Ay, = (I = tpG) I3 Ay,yl))
< Ollz =yl + (1 = 0) (vl — yl| + (1 = t7)[[z — yl)
= (1= (1 =0)(r —vDt)||z —y].

Since 0 < 1 — (1 — 6;)(7 — vI)t < 1, Q; is a contractive mapping. By Banach
contraction principle, @+ has a unique fixed point x; € C, which uniquely solves
the fixed point equation

zp = Oy + (1= 0) Ty, (tyVa, + (I — tuG)JY Ay,me), t € (0,1).
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We summarize the basic property of {z;} and {y;}, where y; = tyVa;+ (I —
t/JG) J)E Al,t Tt.

Proposition 3.1. Let the net {x;} be defined by (3.1) and let the net {y:} be
defined by y = tyVay + (I — tuG)JﬁAytxt fort € (0,1). Let wy = A,z for
t€(0,1). Then
(1) {z:} and {y;} are bounded for t € (0,1);
2) x; defines a continuous path from (0, 1) into C' and so does y; provided
0, : (0,1) — (0,1) is continuous and ry, \i,vy : (0,1) — (0,00) are
continuous and 0 < a < min{ry, A, i} fort € (0,1);

(3) limy_o || Ay, z¢ — JABtAyt-'I;tH = limy ¢ ||w; — Jﬁwtll =0;
(4) limyso ||ze — we|| = 0;

(5) lim¢o |2 — ye|| = 0;

(6) limt_>0 Hl‘t — J)\BtA,,tJ?t” = limt_>0 ||J?t — J)\Bt’th = 0,

(7) timyo 7 — Tt = 0

(8) lim¢—o [lye — Tyl = 0.

Proof. (1) Let p € Q. Observing p = T,,p, p = A,,p, p = thp and p = J;iAl,tp,

we derive
[z — pll = |0sze + (1 — 6¢) T}, y: — pl|

< Oljze — pll + (1 = 0) | T,y — pl
< Bl — pll + (1= 0l — .
and so
e = pll < [ly: —
= |tyVay + (I — tuG)Jﬁwat -l
< tllyVay — pGpl| + (I = tuG) I Ay, e — (I — tpG)p|
< t(|[VVae = yVpll + [7Vp = pGpl|) + (1 = t7)||z; — pl|
< t(ll|xe — pll + 7V — pGpl) + (1 = t7)||lz — pl|
= (1= (r =ADt)||lze — pll + t|YVp — uGpl|.
Thus, it follows that
["Vp — pGp| VP — nGpl|
-l T—7l
Hence {z;} and {y} are bounded and so are {Va}, {Ty x}, {J{ Ap,2e} =

{J)]iwt}, {T,y:}, {Gxs}, {GJﬁAutxt} and {JﬁA,,tyt}.
(2) Let t, tp € (0,1) and calculate

l|we — @4, ||
= |0 + (1 = 00) T, ye — (Oro e, + (1 = 010 )T, yto)
= [|(0r — O )zt + 01y (21 — @40) + (01, — 00) Ty, yr + (1 — 04 ) (T, 9 — T, yto) |
< 10 = O ll|ael] + Oro llze — 2o | + (1 = i)y — Yol

+ (L= O ) T yto — Tryy Yto | + 108 — O [ T, 92

e = pll < and [ly — pl| <



GENERAL ITERATIVE ALGORITHMS 533

which implies
(L= Oso)lze — w0l < 10 — O, |([l2e ]l + 1T, )
+ (1= 0t) (lye — ytoll + 1T, yt0 — Ty Yo l])-

Thus, we have

|0 — O, |
(3:2) lloe — el = — 9t° (el + 1T yell) + lye = o | + 1T yto = Triy Yo l-
0
And, from definition of y;, we derive

[yt — o
< |t —to)yVae +to(WWar — vV,
+ (I = tuG) I Ay — (I — topG) I Ay
(I = topG) I vy — (I = topG) I3 Au, ||
< [t = tollly V| + tolllze — @ || + [t — tol[| LGS Ay,
+ (1 —tor)(|IL vy — TL A, ey || + | TL Avy ey — JﬁkoOxtoH)
< [t = tollYVaell + tovlllze — w4, || + [t — tol |G I5; Av,
+ (1= tom)(||me — o, || + ||J,€Autxt0 — JﬁOA,,th:tOH)
= [t — to|(IyVarll + |0GIE Ay, i) + (1 = (7 = A)to) |2 — @1, |
+(1- tor)||JfA,«t:£t0 — J/\'io Avtoxto”-
Combining (3.2) and (3,3), we obtain

|2+ —ItoH

el + 1T, e
(34) = (1= 6s,) (T —Dto

YV + |nGIE Ay, 2|
(1 —=Dto

|0 — 04| +

[t — %ol

ﬁnnyto ~ Ty, Yoo |l + (::%IIJQAW:%fJﬁoAutoxtOH.
Now, let A,,z;, = w; and Awo ZTt, = Wy,. Then, from Lemma 2.4, we get
(3.5) (y—wt,Awt>+y%<y—wt,wt—wt())20, Yy eC
and
(3.6) (y — wyy, Awyy) + V%(J(y — Wy, Wiy — Ty > 0, Yy e C.

Putting y := wy, in (3.5) and y := w; in (3.6), we obtain

1
(3.7) (wey — wy, Awy) + 17<wt0 — Wy, wy — Tyy) > 0
t
and
1
(38) <wt — Wiy, Awt0> + 7<U/t — Wiy, Wy — .’Et0> > 0.

Vto
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Adding up (3.7) and (3.8), we deduce

wy — ‘rto wtg - xto
—(wg — wyy, Awy — Awyy) + (wey — wy, - ) > 0.
Vt Vg

Since A is monotone, we get

Wy — Tt Wty — Tty

3.9 — °o _ > 0.
( ) <wt0 We, ” " > =
From (3.9), we derive
V.
l[wy = we, [|* < (wyp — wyy, (1= Tt)(wto — Tt,))
0

”wto — Tty H
t0|

< lwg — wyy ||| — v )

and hence
M
(3.10) e — wry || < v — vy | =T

where M; > 0 is an appropriate constant. Moreover, from the resolvent identity
(2.2) and (3.10), we deduce

13 Avettg = IS Avy e || = [1T5 we = T we, |
A A
oo o)
A A
(3.11) < | B (wy — wiy) + (1= 52 ) (TP wp — wy,)
)\t )\t

(|8 wy — we|
< lwe — weg || + [Ae = Agy |~

M M.
<|w-— Vt0|71 + A — )\t0|72a

where M, > 0 is an appropriate constant.
Again, let T}, yr, = 2t and T, yr, = 2t,- Then, by Lemma 2.5, we have

1
(3.12) (y — 2z, Tz) — r—(y —zt,(L+ 1)z —yey) <0, Vyel
t
and
1
(313) <y_ZtO7TZt0> - r<y_zt07(1+rto)zto _yt0> SO? vye C.
to

Putting y := 2, in (3.12) and y := z in (3.13), we get

1
(314) <Zt0 — Zt,TZt> — F<Zt0 — Z¢, (1 + Tt)Zt - yt0> <0
t
and
1
(315) <Zt — Zt07TZto> - 7<Zt — Ztg»y (]. + Tto)ztg - yt0> S 0.

’I"to
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Adding up (3.14) and (3.15), we obtain

<Zt0 — Zt, TZt — tho>

3.16 — —
(3.16) o (Ltr)z—y  (L+74)2, Ytoy < ),
Tt Tto
Since T is pseudocontractive, by (3.16), we have
<Zt0 _ 2t — Yt _ Rty — yt0> > 0’
Tt Tto
and hence
r
(3.17) (2to = 20520 = 210 + 210 — Yto — %(zto — 1)) 2 0.
to

From (3.17), we derive

,
12t — 2t I < (240 — 26, (1 — f)(zto — Yto))

to
P
< ety — zollre — iy 12t = Y0l
and hence
M3
(3'18) ||T7‘tyt0 - TTtoytOH = ||Zt - zto” < |Tt - Tto‘??

where M3 > 0 is an appropriate constant. From (3.4), (3.11) and (3.18), we
have

lze — x4, ||
izl + 1Tt g g, | 4 [V Vael| + |uGTE A,z et
T (1= 0, (T — Do 0 (r — D)t
+¥||T - T ||+ﬂ||JBA 2rg — JB Ay za|
(T—’yl)to reYto Hoyto (T—’yl)to A Fvedto Aeg ey to
o+ Tl g, IVl IGIE Al
T (L= (T — Do ’ (1 —~Dto
1 M3 1—t0 ]\41 ]\42
(r — ~Dta b P R - — 4| A = A | —).
* (T—’Yl)to‘rt ool a (T—vl)to(m ol a + 1M tol a )

Since 6; : (0,1) — (0,1) and r¢, v, A¢ ¢ (0,1) — (0,00) are continuous, we
deduce that z; is continuous. Also, it follows from (3.3) and (3.11) that y; is
continuous.

(3) Let p € Q. Then, it follows from the resolvent identity (2.2) that

1 1
inA,,txt = Jﬁwt = Ji(§wt + §J)€wt)
2
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Then we get
B B 1 1 B
15w~ pll = 175, (e + 375 w0) — ]
< G+ LI w) — Aupl
= (e~ Aup) + (T — Al

Thus, by (2.4), we obtain

1 1
178 we = pl? < 15w = Ayp) + 5 (IR = Ay,p)|?
1 1 1
= Sllwe = Aupl? + 5 1TE we = Aypl> =l — B wi]?
2 2 4
1 1
(3.19) = 5lAu = Al + 1 E Ava — I Aupl?

1
- 1||wt — J{wy|?

IN

1 1 1
llwe=plI? + Sl = pll* = Fllwe = TS|

1
= |z = pl* = 7llwe = Jaw*.
Therefore, from (3.1), definition of y; and (3.19), we derive

e — plI* < llye — plI?
< (tlyVar — pGpll + (I = tnG) I Ay, — (I — tuG)p|))?
< (Ve — pGpl| + (1 — t7)[| I we — pl))?
(3.20) = *|WVar — pGpl|* + 2t(1 = t7) |4V e — uGpl| I wr — p
+ (1 —t7)*|| T we — plf?
<tMy+(1-— tT)Hinwt —p|?

1
<My + (1= tr){[lwe = pll* = llwe = T wl ),

where M, > 0 is an appropriate constant. This implies that

41

— (M4 = 7l — o).
—t7

l[we — Jwy|* < T

By boundedness of {z;}, letting ¢ — 0 in above inequality yields

. B -
lim fJwy — Jywel| = 0.
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(4) Let p € Q. Then, since p = A,,p and A,, is firmly nonexpansive, we

deduce from (2.3)
lwe = plI* = | A, 2 — Ay,p|?

S <wt_p7$t_p>

1
= gz = pl* + llwe = pl* = llo = wi]]*),

and hence
[we = plI* < llee = plI* — [l —w*.
Thus, we have
(3.21) [T we =l < llwe = pl* < [z = pl* = [z — wel*.
From (3.20) and (3.21), we derive
lze = pII* < llye = pII?
<My + (1= tm) | J5we = pl)®
< My + || T5we = pl?
< tMy+ (|lze = pl* = llze — wil?),
and hence
||.’£t — 'lUt||2 S tM4
This implies that
li —wy|| = 0.
lim [l —w =0
(5) Since
2 = yell = llze = (¢YVae + (I = tpG) IS wy) |
= [t(nGxy —YVay) + (I — tpG)ay — (I — tuG)Jﬁth
< Gy — V| + (1= tr) ||z — T we|
< t|pGay — V| + |z — TG we
< tpGay —AVay| + [l — wel| + lw, — T3 w|
by boundedness of {Gz:} and {Vz;}, (3) and (4), we obtain
lim 1 ] = 0.
(6) Since
2 = T8 Avzel| = Nz = TS wel| <l — well + [Jwy — T3 we
by (3) and (4), we have

- B o B, | _
lim lze — Iy, Av, el = lim |lze — Jy,we|| = 0.
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(7) In fact, since
[y = Trpae|| = [|0e + (1 = 00) Ty ye — Trye|
= 0u(ze — Tr,ze) + (1 — 00)(Tr oy — Ty i) |
< Ollwe — Tyl + (1 = 0) | Ty — Tyl
by (5), we obtain
lze = Ty el < | Thyye — Trywel| < llye — el = 0 (£ —0).
(8) From (5) and (7), it follows that
lye = Troyell < llye — zell + l|we = Trzell + 1Tz — Tr e
< lye — @il + lloe = Trowel| + lze — well
=2[lyr — @il + |lze — Tzl = 0 (= 0). O

By using Proposition 3.1, we establish strong convergence of the path zy,
which guarantees the existence of solutions of the variational inequality (3.22)
below.

Theorem 3.2. Let the net {x;} be defined by (3.1). Let 6, : (0,1) — (0,1)
be continuous and let ry, A, vy : (0,1) — (0,00) be continuous and 0 < a <
min{r:, Ay, 1} for t € (0,1). Then {x:} converges strongly, as t — 0, to a
point q € Q, which is the unique solution of the variational inequality:

(3:22) (WG =V)g,p—q) >0, VpeQ.

Proof. We first note that the uniqueness of a solution of the variational in-
equality (3.22) is a consequence of the strong monotonicity of uG — «V (see
Lemma 2.7). In fact, suppose that both ¢; € Q and g2 € Q are solutions to
(3.22). Then we have

(3.23) (WG =YV)q1,q1 — q2) <0
and
(3.24) (G =9V)q2,q2 — q1) < 0.

Adding up (3.23) and (3.24) yields

(UG =AV)q1 — (G =V )q2,q1 — g2) < 0.

The strong monotonicity of uG — vV implies that ¢; = g2 and the uniqueness
is proved.

Let the net {y;} be defined by y, = tyVa,+ (I —tuG)JY Ay zy for t € (0,1).
Let {¢t,} C (0,1) be a sequence such that ¢, — 0 as n — oo. Put x,, := x,,
Yn = Yt,, Tn i=Tt,, Ap := N, and v, := 1. Since {z,} is bounded by (1)
in Proposition 3.1, there exists a subsequence {z,,} of {z,}, which converges
weakly to ¢g. First of all, we show ¢ € €. To this end, we divide its proof into
three steps.
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Step 1. We prove that ¢ € Fiz(T). To show this, put z, = T, y,. Then, by
Lemma 2.5, we have

1
(3.25) (y— zn, Tzp) — T—(y —zZn, (L4 710)2n —yn) <0, VyeC.

n

Put I = ev+ (1 —€)gq for e € (0,1] and v € C. Then [, € C, and from (3.25)
and pseudocontractivity of T', it follows that
<Zn - le>Tle> 2 <Zn - lea Tle> + <le - ZnaTzn>

1
- 7<le — Zn, (1 + Tn)zn - yn>

n

1
= - <le — 2, Tle — TZ7L> - 7<ls — RnsRn — yn>

(3.26) = ) "

v

1
- ||le - ZnH2 - r<le — Zn,”n — yn> - <le - Znazn>

= - <le - Zn7le> - <le — Zn, o _y’ﬂ>

n

Since
20 = znll < ll2n — Tr,2all + 1T 20 — T yn|
<an = Trzall + |20 — yull = 0 (0 — o0)
by (5) and (7) in Proposition 3.1, it follows that z,, — ¢ as i — co. Also, by
(8) in Proposition 3.1, we have Hz”r_y”” < lza=vall 4 . S0, replacing n by n;

n - a

and letting ¢ — oo, we derive from (3.26)
<q - le7Tle> > <q — e, le>

and
—(v—¢,Tl.) > —(v—gq,le), YveC.
Letting € — 0 and using the fact that T" is continuous, we obtain
(3.27) —(v—q,Tq) > —{v—yq,q), YveC.
Let v = Tq in (3.27). Then we have ¢ = Tq, that is, ¢ € Fiz(T).
Step 2. We prove that g € VI(C, A). To this end, let w, = A, x,. Then, by
Lemma 2.1, we induce

Wpn — T

(3.28) (Y — Wn, Awy) + (y — wp, )>0, VyedC.

Set le = ev+ (1 —¢)q for e € (0,1] and v € C. Then I, € C, and it follows from
(3.28) that

(le = wp, Ale) > (le —wp, Ale) — (le — wy, Aw,,)

wn—xn>

3.29
( ) - <le - wnv
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”wn*mn H < ”wn*wn”

By (4) in Proposition 3.1, we have = < - — 0 as n — o0, and so
Wy, — ¢ as ¢ — 00. From monotonicity of A, it follows that

(le — wp, Ale — Aw,) > 0.
Thus, replacing n by n; and letting ¢ — oo, from (3.29), we obtain
0 < (le — g, Ale),
and hence
(v—¢q,Ale) >0, YveCl.
If € — 0, then the continuity of A yields that
(v—¢q,Aq) >0, YveC.
This means that g € VI(C, A).

Step 3. We prove that ¢ € B~'0. To this end, let u, = anwn. Then it
follows that

wy € (I+ A\yB)uy, that is, w € Bu,,.
Since B is monotone, we know that for any v € Bu,
(3.30) (Un, — u, @ —v) > 0.

[[wn—J 3 wall

Since Hw"’/\;“"” < = — 0 as n — oo by (3) in Proposition 3.1 and
|z —wn|| — 0 as n — oo by (4) in Proposition 3.1, we have u,, — q as i — 0.
By replacing n by n; in (3.30) and letting ¢ — co, we have

<q_u7 _U> Z O

Since B is maximal monotone, we get 0 € Bgq, that is, ¢ € B~'0. This along
with Steps 1 and 2 obtains g € €.

Next, we show that ¢ is a solution of the variational inequality (3.22). In
fact, from (3.1), we write for p € Q,

xy —p=0i(x; —p) + (1= 0)(T,y: — p) <= 1 —p =T}, y: — D,
and ||lz; — pl| = [T,y — pll < [lye — pl|- Observing
g —p =t(YVz, —yVp) +t(yVp — uGp) + (I — tuG)J3 Ay, z — (I — tuG)p,
we deduce
lye — plI* = (ye — P, y¢ — D)
= (t(yVar — VD), y: — p) +t(yVp — uGp,y: — p)
+ (I = tpG)JY Ay,ae — (I — tpG)p, ys — p)
< tylllze — pllllye — pll + tYVp — uGp, ye — p)
+ (I =t7) ||z — pllllye — pll
< tylllye — plI*> + (L= t7)|lye — plI* + t(yVp — uGp,y: — p)
= (1= (r = ))ly: = plI* + t(yVp — uGp, v — p),
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and hence
H%fMFST_Wﬁﬂ%*anmfp%
In particular,
1
(3.31) Mm—MFS;jWth—M%wm—M-

Since ¢ € €, by (3.31), we obtain

1
3.32 e — |2 < —— (vVq — uGq, yn, — q).
(3.32) ([Yn. QH__vaﬁv q — nGq, yn;, — q)

Since z,,, — ¢ and ||z, —yn|| = 0 (n — o) by (5) in Proposition 3.1, it follows
that y,, — ¢q as ¢ — oo. Thus, from (3.32), we derive y,, — ¢ as i — oo.
Moreover, by taking the limit as ¢ — co in (3.31), we get

lg —p|* <

T_vﬂwG—vam—Q)

In particular, g solves the following variational inequality
q€Q, ((WG—=~V)pp—q) =20, peL,

or the equivalent dual variational inequality (see Lemma 2.6)
q€Q, ((uG=V)g,p—q) 20, peQ

Finally, we show that the net {x;} converges strongly, as ¢ — 0, to ¢. For this
purpose, let {sx} C (0, 1) be another sequence such that s, — 0 as k — oco. Put
Ty, i= x5, and Yy, := ys,. Let {xy,;} be a subsequence of {x;} and assume that
xy; — q. Then, by the same proof as the one above, we have g € 2. Moreover,
from strong monotonicity of uG — vV, it follows that ¢ = §. Therefore, we
conclude that z; — ¢ € Q as t — 0, which is the unique solution to the
variational inequality (3.22). This completes the proof. |

By taking V =0, G = I, p = 1 in Theorem 3.2, we obtain the following
result.

Corollary 3.3. Let the net {z:} be defined by
Ty = 0t$t + (1 - Ht)Trf((]. - t)JAB;AVtZ't), te (O, 1)

Let 0; : (0,1) — (0,1) be continuous and let r¢, A,z ¢ (0,1) — (0,00) be
continuous and 0 < a < min{r, Ay, 11} for t € (0,1). Then {x:} converges
strongly, as t — 0, to q, which solves the following minimum-norm problem:
find q € Q such that

llgll = min [l
Proof. From (3.22) with V =0, G =1 and p =1, we derive
0<(¢,p—q), YpeQ.
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This obviously implies that

lal* < {p,a) < lIpllllgll, Vp € Q.

It turns out that ||¢|| < ||p| for all p € Q. Therefore, ¢ is the minimum-norm
point of Q. O

Now, we propose a new iterative algorithm which generates a sequence {x,}
in an explicit way: for an arbitrarily chosen zy € C,
(3.33) @py1 = Bntn + (1= Bn)Tr, (Ve + (I — anuG)anAynxn), n >0,
where {a,, } and {8, } are two sequences in (0, 1), and {r, }, {A\n}, {vn} C (0, 00),

and establish strong convergence of this sequence to an element of 2.

Theorem 3.4. Let the sequence {x,} be generated iteratively by the explicit
algorithm (3.33). Let {an},{Bn} C (0,1) and {r,}, { n}, {vn} C (0,00) satisfy
the following conditions:

(C1) limy, 00 atp = 0;

(C2) S, oy = oo

(C3) 0 < liminf,, o B, < limsup,,_, o fn < 1;

(C4) 0<a<r, <oo and lim,_ o [Tpt1 — Tn| = 0;

(C5) 0 <a< A <0 and limy, o0 A1 — An| = 0;

(C6) 0 <a<v, <ooandlim, oo [Vnt1 — pfin| = 0.
Then {x,} converges strongly to a point q € §, which is the unique solution of
the variational inequality (3.22).

Proof. Let ¢ € Q be the unique solution of the variational inequality (3.22).
(The existence of q follows from Theorem 3.2.)

From now, we put y, = ¥V, + (I — oznuG)JABnAunxn and w, = A, x,
for n > 0.

We divide the proof into several steps.

Step 1. We show that {z,} is bounded. To this end, let p € Q. It is obvious
that p = inAynp7 p=A,Dp,p= Jﬁp and 7, p = p. And we obtain
[yn =Pl = llenyVan + (I — anpG)JE w, — p
< lan(YWan —vVp) + an(vVp — uGp) ||
+ [ = anpG) IR wy — (I — anpuG)p||
anl[YVan =4Vl + anllyVp — pGp| + (1 — a,7)llw, — p||
anYl|zn — pll + an|VVp — pGpll + (1 — an7)||zn — p||
= (1= (1 =vD)an)||zn — pll + an|vVp — pGp|.

Thus, since T, is nonexpansive (by Lemma 2.5), from (3.33) and (3.34), we
deduce

[#nt1 =Pl < Bullen —pll + (1 = Bu) T, yn —
< Bullen = pll + (1= Bo)llyn — 2l

(3.34) <
<
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< Bn”xn - pH
+ (1= B)[(1 = (7 = D)) |zn — pll + anllvVp — pGpl[]
= (1= (1 =BT —vD)an)|zn — pl

(L= B)(r — D, VR RGP

T =7l
Vp — uGp
< max{nzn _p|,, VP = Crl }
T—l
Using an induction, we have
YVp — pGp
o =l < ma{ g =, L2121,
T =7l

Hence, {x,} is bounded. Also, {yn}, {wn} = {Av, 20}, {un} = {J wa},
{Gz,}, {Ganwn}, {zn} =A{T", yn} and {Vz,} are bounded.

Step 2. We show that lim,, o ||,+1 — Z,|| = 0. For this purpose, first, we
derive

(335)  llyn = yn—1ll
= lapyVa, + (I — anuG)JﬁAunxn
—(n—1YVap_1+ (I — an,luG)anflAynflxn,l)H
< [[(an — an—1)yVan—1 + an(YWayn = yVan_1)|
I = G IE w, — (I = auiG)IE, was
+|(I - anuG)Jﬁflwn_l - (I - an_luG)anflwn_lﬂ
< Jtn = WV 1| + an o — 201
+ (1 - O‘nT)”JAann - J/\'il,lwnle + |on — an+1|||uGJ)\Bn71wn,1||
=l = Gt (V]| + [1GIE. was])
+ anyl||Tn — Tp-a | + (1= anT)HJﬁLwn - )\B7L71wn71||
< |oznfan_1|M5+ozn’yl||a:nfxn_l||+(1704n7)HJﬁwn—Jﬁ_lwn_ln,
where Ms > 0 is an appropriate constant. Let w, = A, z, and w,_; =

Ay, ,xn—1 again. Then we get

1
(3.36) (y — wp, Awy) + —(y — wp,w, —x,) >0, Yyel

n

and

(337) <y — Wnp—1, Awn71> +

(Y — Wn—1,Wp—1 —Tp—1) >0, VyeC.

Un—1

Putting y := wy_1 in (3.36) and y := wy, in (3.37), we obtain

1
(3.38) (Wp—1 — Wy, Awy,) + V—(wn_l — Wy, Wy, — Tpy) >0

n
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and
1

Vn—1

Adding up (3.38) and (3.39), we deduce

(3.39) (wy, — Wp—1, Awp_1) + (Wy, — Wp—1, Wp—1 — Tp—1) > 0.

Wn — Tn N Wn—-1 — Tpn-1

*<wn*wn—1aAwn*Awn—1>+<wn—1 — W, > 2 0
Vn Vn—-1
Since A is monotone, we get
Wy — T Wp—1 — Tnp-—1
<wn—1 — Wn, = e “ > >0,
Vn Vn—1
and hence
Vp—1
(340) <wn — Wp—1,Wn—1 — Wp + Wy — Tp—1 — = (’U)n - $n)> > 0.

Vn
From (3.40), we derive

VUp—
Wp — Wn—-1 S (Wp — Wp—1,Wn — Tn Tp — Tp—1 — nol (wn - mn)>
|| I? < ¢ ¥ :
n

Vp—
= (W, — Wp—1,Ty, — Tp—1 + <1 - 1>(wn — )

<l = w0 = 2ncall + 1 = sl = ]
This implies that
(3.41) [wn = wn—1]| < [|on — 2pa| + 2|Vn = Un—1[|wn — @]
Moreover, from the resolvent identity (2.2) and (3.41), we induce

(3.42) I wy — JY _ wn]|

)\nfl )\nfl
=78, (Anw" + (1 - )anwn) —JY  wa|

Anfl Anfl
< |12

An

(wn = wn-a) + (1= 1) (0 w0, - wn)|

A

— An—
< o = wa sl + P2 =20t

— Ty

w JE w, —w
< Yo =l o — v 122 I, = |

+ | An — A=t .

Substituting (3.42) into (3.35), we derive
(3.43) [9n = yn—1ll
< Ian - an—1|M5 + O‘n’}/l‘lxn - xn—l”
+ (1= )| wn — I, wn

< lan - O‘n71|M5 + anﬂylen - :L'n71|| + (1 - anT)Hxn - xnfln
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|wn, — x| ||J/€Lwn7wn||

+|Vn*1/n—1|| +‘)\n*)\n—1|

a
< (1 —an(m =yD))zn — 1| + [an — an—1|Ms
+ |l/n — I/n_1|M6 + ‘)\n — )\n_1|M7,
where Mg and M7 > 0 are appropriate constants.
On the other hand, let z, =T, y,. Then, since z,, , =T, _,yn—1, we have

1
(344) <y - vaTZn> - 7<y — Zn; (]- + Tn)zn - yn> < 07 Vy eC

Tn

and

(3.45) (y—zn—1,Tzp—1)—

(Y=2n-1, 1+7p—1)2n—1—Yn—1) <0, YyeC.

Tn—1
Putting y := z,—1 in (3.44) and y := z, in (3.45), we get
1
(3'46) <Zn71 - ZnaTzn> - 7<zn71 — 2Zn, (14 rn)zn - yn> <0
r

n

and

1
(347) (zn—zn-1,T2n-1) —

Tn—-1
Adding up (3.46) and (3.47), we obtain
<zn71 — Zn; Tzn - Tzn71>

3.48 1 n)cn — Jn 1 n— n—1 " In—
(3.48) —<Zn—1—zn,( +r)zn —Yn (L4 7ra1)za1—y h

(zn — 2n—-1, (L +71p—1)2n-1 — Yn—1) < 0.

<0.
Tn Tn—1

Using the fact that T is pseudocontractive, we have by (3.48)

<Zn—1 — 2, Zn — Yn o Zn—1 — yn71> 2 0,
Tn Tn—1
and hence
r
(349) <Zn—1 — ZnyZn — Zn—1 1t Zn—1— Yn — rin(zn—l - yn—1)> > 0.
n—1

From (3.49), we derive

Tn

||Zn - Zn—lH2 < <Zn—1 — ZnyYn—1 — Yn + (1 - )(zn—l - yn—1)>

Tn—-1
Th — Tpn—1
< ewes =l (oo =l + 2= ).

Thus we obtain

|T7l - Tn—1|
lzn—1 = yn—1ll-
a

(3.50) 20 = zn—1ll < llyn—1 — ynll +
Substituting (3.43) into (3.50) yields
(3.51) lzn — 2zp—1ll £ (1 = an(T = D))l2n — Tn-all + [an — an-1[Ms

+ |Vn - l/n71|M6 + ‘)\n - >\n71|M7 + |rn - Tnfl‘MB
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< ||33n - xnfln + |04n - an—1|M5
+ |Vn - Vn—1|M6 + ‘)\n - >\n—1|M7 + |Tn - Tn—l‘M&

where Mg > 0 is an appropriate constant. In view of conditions (C1), (C4),
(C5) and (C6), we find from (3.51)

limsup(||zn — zn—1|| — |&n — n-1]]) < 0.
n—oo

Thus, by Lemma 2.2, we have

(3.52) nh_)n;o |z — x| = 0.

Since Tp41 — Tpn = (1= Bn)(2n — Tn), by (3.52) and condition (3), we conclude
nlggo [#nt1 — 2al| = 0.

Step 3. We show that lim,,_, ||z, — wy|| = 0, where w, = A, z,. To show

this, let p € Q. Then, since p = A, p, we deduce
[wn = plI* = | Av, 20 — Au, plI?
S <wn — D, Tn _p>

S ln = Bl + o = 9 = 1z = wal?)
and hence
lwn = plI? < 2w = plI* = llzn —wal*.
Thus we have
1Ty =2l < llyn — pII?
= llan(YWay — pGp) + (I = anpG)J3 wy — (I — anpG)p|®
< (anlvVa, — pGpll + (1 = anT)||wn — pl|)?
< (an|vVa, = pGpl + [[wn — pl)?
< an My + [w, — pl|®
< @My + ||z = pl* — [lzn — wa?,
where My is an appropriate constant. This implies
l2n = w|* < anMy + ||z = pl* = |17, yn — pII?
anMy + (|zn = pll + |7, yn — P (l2n — Pl = [T, 5 — pl)
anMy + ([n = pll + 177, yn — P l2n — Tr, ynll

IN

||1'n+1 -
= a, My + 12nt1 = ool
on Mg + 1_ ﬁn
where Mjo is an appropriate constant. Hence, by conditions (C1) and (C3),
and Step 2, we obtain

lim ||z, —wy| =0.
n—oo
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Step 4. We show that limg, o [|J{ wy — | = 0. To this end, let p € Q.
First, we observe
Yn *p”z = lanyVr, + [ - O‘nUG)Jﬁ,w" *pH2
< (@l VVan — uGpll + (I = anpG) I3 wn — (I — anpG)pl)?

(3.53) < (an|YVan = uGpll + (1 = ap7) || J3 w, — pl])?
< (anllyVan = pGpl| + || wn — pl|)?
S aanl + ||J,€Lwn _p||27

where Mj; is an appropriate constant. Next, since J /\i is firmly nonexpansive
(see (2.1)) and J p = p, we derive from (2.3)

195, wn = plI* < (I wn = p, wn — p)
1
< §(||Jﬁ,wn = Pl +llwn —pl* = (I wn — p) = (wn = p)|*)

1
S U7X, wn = plP Hllwn =p* =17, wn =2 + 2 — wn?)

IN

S 0o~ I+l — oI
- ||J>\ann_xn||2_Hwn_wn”2+2”=]>\ann_xn””xn_wn”)v
and so
(3.54) 13 wn = pl|? < llwn = plI* = |3 wn — 2al® = [l — wall?
+ 2||J>€Lwn - anan - wn”
Thus, by (3.33), (3.53) and (3.54), we obtain
201 = pI* < Ballzn —pl* + (1 = BT yn — pII?
< Ballzn = plI* + (1 = Ba) lyn — pII?
< Ballen =l + (1 = Ba)(an My + [|J3 w, — pl|)
< Ballzn = pll* + (1 = Ba)(an My + [lwn — pf?
— 193w = @nl* = ll2n — wi |+ 2[| I wn — 2ol — wall)
< Ballzn = plI* + (1 = Ba)(an My + [|lzn — plf?
— % wn = al® + 20198 wa — zallllzn — wal))
< —pl* = (1= B)lIIS wn — 201 + (1 = Bu)an Mia
+2(1 = Bu)IlJ3 wn — zal[[2n — wall.
This implies
(1= BIL wn = al? < llzn = pI* = 201 = pl> + (1 = Bn)an M
+2(1 = Ba) |3, wn — x|l — wall
< (lzn = pll + 2041 = pIDIl2n — Znaal
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+ o M1 + || 2n — wy || M2,

where Mo is an appropriate constants. Thus, by conditions (C1) and (C3)
and Steps 2 and 3, we have

lim. |72 wy, — 2| = 0.

Step 5. We show that lim,, o ||w, — J/{annH = 0. Indeed, since
Hwn - Jﬁwn” < ”wn - mn” + Hxn - Jﬁwn”

by Steps 3 and 4, we have

nh_}n;@ [wy — J¥ w,|| = 0.
Step 6. We show that lim,, . ||z, — yn|| = 0. In fact, since

”xn - yn” = Hxn - (avf}/vzn + (I - an#G)Jﬁwn)”

|| pGan — V| + [[(I — anpG)en — (I - anNG)Jiwn”
< apMiz+ (1 — an7)||@, — anwnH,

IN

where M;3 > 0 is an appropriate constant, by condition (C1) and Step 4, we
get

nh_)néo [2n — yull = 0.
Step 7. We show that lim,_, ||[2n — Ty, 2| = 0. In fact, observing
|2 = Tr, 2|
< wn = 2ppall + llznas — Tryynll + 1T, Y0 — Tr 0|
< Mlzn = Zpga | + Bullzn — Tr ynll + [lyn — 24|
< wn = 2pgall + Bullzn — Ty znll + 1T, 20 — Tr ynll)
+ |yn — znl|
< lzn = zngall + Bullen — Tr 2|l + (14 Bo)llyn — 2alls

we get

|zn — Trnxn” <

- Uon = @l + (15 Ba)l = 2l
Hence, by condition (C3), Steps 2 and 6, we obtain
n11_>1r010 lwn — Tp, xn || = 0.
Step 8. We show that limy, o0 [|yn — Tr, Yn|| = 0. Indeed, since
lyn = Tryynll < lyn = @all + 20 = T, @nll + (| T, 20 — Tr, |
< 2zn — ynll + 20 — Tr, 20|
by Steps 6 and 7, we have

lim ||y, — T, ynll = 0.
n—oo
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Step 9. We show that

limsup((vV — pG)q, yn —q) < 0.

n— oo

For this purpose, we can choose a subsequence {y,,} of {y,} such that
lim (V' = pG) g, yn, — q) = limsup((7V — pG)q, yn — )-
=00 n—o00

Since {yn,} is bounded, there exists a subsequence {yn]} of {yn, } which con-
verges weakly to some point z. Without loss of generality, we can assume that
Yn, — 2. Then, by using Steps 3, 4, 5, 6, 7 and 8 and argument similar to
those of Steps 1, 2 and 3 in the proof of Theorem 3.2, we obtain z € Q2. Thus
we have

limsup((yV = pG)g, yn — q) = lim (Y — pG)q, yn; — )
n—oo K3 o0
=(("W —uG)g,z —q) <0.

Step 10. We show that lim,,_,c ||zn — ¢|| = 0. Indeed, from Lemma 2.1, we
derive

lyn = I =llanyVan + (I — anpG)J3 Ay, 2, — gl
= lan(YVan —vVq) + an(vVq — pGq)
+ (I = anuG)JL Ay xn — (I — o uG)glf®
(3.55) < lon(Wan =4Vg) + (I — anpG)JC Ay, xn — (I — conG)gl|®
+ 200, (VW q — pGq, yn — q)
< (anyllln —qll + (1 — ay7)
+ 20, (YVq — pGq, yn — q)
= ((1 = (7 = an) |z — ql)* + 20, (VW = pGa,yn — q).
Thus, by (3.33) and (3.55), we obtain

2nt1 = all* < Ballzn — all* + (1 = BINT, yn — all®

< Ballzn = all* + (1 = Ba)lyn — all?

< Bullzn —ql? + (1= B)((1 = (7 = D)) 20 — gll)?
+2(1 = Bn)an(YVq — pGq, yn — q)

< Bullzn = all* + (1 = B2)(1 = (7 =y an)[l2, — gl
+2(1 = Bp)an(VWVa — nGq, yn — q)

= (1= (1= Ba)(r = y)an) ||z, — gl
Lol = B)(r — Al (Wa—pGq,yn — q)

T =7l
= (1 - fn)”xn - Q||2 + §n6n7

lzn — qll)?
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where &, = (1 = 8,)(7 — 7l)an and 6, = W‘ZZE—W. From conditions

(C1), (C2) and (C3) and Step 9, it is easy to see that &, — 0, >, &, = 00
and limsup,,_,, 6, < 0. Hence, by Lemma 2.3, we conclude

lim |z, —q| = 0.
n—oo
This completes the proof. (I

By taking V =0, G = I, p = 1 in Theorem 3.4, we obtain the following
result.

Corollary 3.5. Let the sequence {x,} be generated by
xn-‘rl - /ann + (1 - ﬂn)Tul((l - an)JB Arnxn)a n Z 0

Tn

Let {an}, {Bn} C (0,1) and {r,},{ \n},{vn} C (0,00) satisfy the conditions
(C1), (C2), (C3), (C4), (C5) and (C6) in Theorem 3.4. Then {x,} converges
strongly to a point q € ), which is the minimum-norm element of €.

If in Theorem 3.4, we take T' = I, the identity mapping on C', then we obtain
the following result.

Corollary 3.6. Suppose that Q1 = VI(C,A) N B710 # 0. Let the sequence
{z,} be generated by

Tpt1 = Bnn + (1 = Bn)(anyVa, + (I — anuG)JﬁA,,nxn), n > 0.

Let {an},{Bn} C (0,1) and {\.},{vn} C (0,00) satisfy the conditions (C1),
(C2), (C3), (C5) and (C6) in Theorem 8.4. Then {x,} converges strongly
to a point q € 1, which is the unique solution of the following variational
inequality:

(WG =V)g,p—q) 20, Vpe Q.
If in Theorem 3.4, we have C' = H, then we have the following corollary.

Corollary 3.7. Suppose that Qy = Fiz(T)NA"'0NB~10#0. LetT: H — H
be a continuous pseudocontractive mapping and let A : H — H be a continuous
monotone mapping. Let the sequence {x,,} be generated by

Ln+1 = ﬂ”mn + (]- - 5”)Trn (an,yvxn + (I - anﬂG)JﬁAunmn)v n > 0.

Let {an}, {Bn} C (0,1) and {r.},{ .}, {vn} C (0,00) satisfy the conditions
(C1), (C2), (C3), (C4), (C5) and (C6) in Theorem 3.4. Then {x,} converges
strongly to a point q € Qs, which is the unique solution of the following varia-
tional inequality:

(G —=V)g,p—q) >0, Vpe Q.

Proof. Since D(A) = H, we note that VI(H, A) = A=10. So the result follows
from Theorem 3.4. ]
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Remark 3.8. 1) Tt is worth pointing out that implicit and explicit itera-
tive algorithms are new ones different from those announced by several
authors; see, for instance, [7,8,15] and the references therein. In par-
ticular, we use the variable parameters r;, A\, v and r,, A\, v, in
comparison with the corresponding iterative algorithms in [7,8,15] and
the references therein.

2) We know that Fiz(T)NVI(C,A)N B0 C Fix(T)N(A+ B)~10 (see
[8]). Thus, as results for finding a common element of the fixed point
set of continuous pseudocontractive mapping more general than nonex-
pansive mapping and strictly pseudocontractive mapping and the zero
point set of sum of maximal monotone operator and continuous mono-
tone mapping more general than a-inverse strongly monotone mapping,
Theorem 3.2 and Theorem 3.4 are new results, which develop and im-
prove the corresponding results in [7,12,15] and the references therein.

3) Corollary 3.3 and Corollary 3.5 are also new results for finding a mini-
mum-norm point of Fiz(T)NVI(C, A)NB~10, where T is a continuous
pseudocontractive mapping, A is a continuous monotone mapping and
B is a maximal monotone operator.

4) By taking V =0, G = I and p = 1 in Corollary 3.6 and Corollary
3.7, we can obtain new results for finding the minimum-norm point of
VI(C,A)N B710 and Fiz(T)N A~10 N B~10, respectively.

5) As applications in [15], by using Theorem 3.2 and Theorem 3.4, we can
propose implicit and explicit iterative algorithms for the equilibrium
problems coupled with fixed point problem for continuous pseudocon-
tractive mapping.

Acknowledgment. The author would like to thank the anonymous reviewers
for their careful reading and valuable comments along with providing a recent
related paper, which improved the presentation of this manuscript.
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