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SPATIAL DECAY BOUNDS FOR A TEMPERATURE

DEPENDENT STOKES FLOW

Jong Chul Song

To the memory of my esteemed professor, teacher and friend, Lawrence E. Payne

Abstract. This paper examines a temperature dependent Stokes flow
in a semi-infinite cylinder. Under appropriate initial and boundary con-
ditions the author establishes exponential decay of solutions in energy
norm with distance from the finite end of the cylinder.

1. Introduction

We consider a problem of temperature dependent Stokes flow in a semi-
infinite cylinder of uniform cross section. With prescribed data on the finite
end of the cylinder together with appropriate homogeneous initial conditions
and boundary conditions on the lateral surface, Saint-Venant type decay results
are established. Other decay results for Darcy flow, Stokes and Navier-Stokes
flow have been obtained by Payne and Song [12], Ames et al. [1], Song [14], Lin
and Payne [8], and Horgan and Wheeler [6]. See for instance the survey papers
of Horgan and Knowles [5], Horgan [3, 4] and the book of Straughan [15].

In describing the geometry of the semi-infinite cylinder we let R denote its
interior and ∂R its boundary. The generators of the cylinder are assumed to
be parallel to the x3 axis whose entry section is assumed to lie in the plane
x3 = 0. Denoting the cross section of the pipe by D, the closure of D by D
and its boundary by ∂D, we introduce the notation:

Rz = {(x1, x2, x3) | (x1, x2) ∈ D, x3 > z ≥ 0},

Dz = {(x1, x2, x3) | (x1, x2) ∈ D, x3 = z}.

Clearly R0 = R.
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Let ui (i = 1, 2, 3, ), p, and T , all of functions of (x1, x2, x3, t) denote respec-
tively the velocity field, the pressure, the temperature. The flow is described
by

ui,t = −p,i + ν∆ui + gi(x)T in R× {t > 0},(1.1)

uj,j = 0 in R× {t > 0},(1.2)

T,t + uiT,i = κ∆T in R× {t > 0},(1.3)

ui(x, 0) = 0, T (x, 0) = 0 in R× {t = 0},(1.4)

ui = 0, T = 0 on ∂R\D0 × {t ≥ 0},(1.5)

ui = fi(x1, x2, t), T = F (x1, x2, t) on D0 × {t ≥ 0},(1.6)

where ∆ is the Laplace operator, ν and κ the constant kinematic viscosity and
the constant conductivity respectively, gi a given vector function, and a comma
is used throughout to denote partial differentiation. We also use the summation
convention of summing over Latin subscripts ranging from 1 to 3 and over the
Greek subscript α from 1 to 2 unless noted otherwise. The prescribed functions
fi and F are assumed to be continuously differentiable in R and to vanish on
∂D for nonnegative x3 and t, which is to satisfy the compatibility relationships
(1.5). For compatibility we further assume that fi,i = 0 and that fα,α is
differentiable. By re-scaling the space and time variables, we may take both ν
and κ to be 1.

We assume that time lies in some finite interval [0, T ]. We further assume
if the data fi and F are sufficiently small in L2, a classical solution of the
initial-boundary value problem (1.1)–(1.6) will exist.

We note from (1.2) and (1.5) that

∫

Dz

u3dA =

∫

D0

u3dA+

∫ z

0

∫

Dξ

u3,3dAdξ

=

∫

D0

u3dA−

∫ z

0

∫

Dξ

uα,αdAdξ

=

∫

D0

f3dA,

where dA denotes the element of area in D. If the mean value of f3 over D is
zero, we expect the solution in some appropriate measure to vanish exponen-
tially (see [1, p. 1399]). However, here we assume that the net entry flow in
the pipe ∫

D

f3dA = Q(t)

is nonzero and we suppose that T → o(x−1

3
) uniformly in x, x2, t as x3 → ∞

in view of the assumption (1.18), we expect that for sufficiently small data in
(1.1)-(1.6) the velocity field (u1, u2, u3) will tend to a transient Poiseuille flow
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(0, 0, V ) as x3 → ∞, where V (x1, x2, t) satisfies

V,t = V,αα − p̂,3 in D × {t > 0},(1.7)

V = 0 on ∂D × {t ≥ 0},(1.8)

V = 0 in D × {t = 0}.(1.9)

The gradient of the pressure p̂ in (1.7) has the form p̂,i = −Pδ3i where P
is a positive function of t only. This function P (t) is not prescribed but is
determined by the net inflow condition

(1.10)

∫

D

V (x1, x2, t)dA =

∫

D

f3dA = Q(t).

For given Q(t), the problem (1.7)-(1.10) is viewed as an inverse problem for
determining P (t) and V (x1, x2, t) (see [14, pp. 506–507] and [8, pp. 459–460]
and refer also to the similar argument for the stationary Navier-Stokes entry
flow [1, p. 791] and [6, p. 99]).

We now let

(1.11) wi = ui − vi, q,i = p,i − P (t)δi3,

where (v1, v2, v3) = (0, 0, V ). Then we rewrite (1.1)–(1.6) as

wi,t = −q,i +∆wi + gi(x)T in R× {t > 0},(1.12)

wj,j = 0 in R× {t > 0},(1.13)

T,t + (wi + vi)T,i = ∆T in R× {t > 0},(1.14)

wi(x, 0) = 0, T (x, 0) = 0 in R× {t = 0},(1.15)

wi = 0, T = 0 on ∂R\D0 × {t ≥ 0},(1.16)

wi = fi − V δi3, T = F (x1, x2, t) on D0 × {t ≥ 0}.(1.17)

We assume further that for any finite positive constants k1 and k2 the
weighted energy expression
(1.18)∫ t

0

∫

R

x3wi,jwi,j dxdη + k1

∫ t

0

∫

R

x3wi,ηwi,η dxdη + k3

∫ t

0

∫

R

x3T,iT,i dxdη

is bounded. Here dx denotes the element of volume and dη the element of time
and there is no summation over a running time variable η.

In the next section we record some of the inequalities that will be used in
our derivations. In Section 3 we derive a differential inequality for a weighted
energy which integrates to yield exponential decay for finite energy solutions,
and in the final section we establish a bound for the weighted total energy.
To attempt to derive the absolute sharpest result would lead to a long and
perhaps confusing paper, so in this paper we do not attempt to determine
optimal results. Some detail, however, is necessary in order to show that the
bounds we obtain are actually valid.
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2. Auxiliary inequalities

We list in this section a number of inequalities in addition to the Schwarz
inequality and the arithmetic-geometric mean inequality used throughout this
paper.

Let v be a Dirichlet integrable function defined on a bounded plane domain
D and vanishing on ∂D, then

(2.1) λ

∫

D

v2dA ≤

∫

D

v,αv,αdA,

where λ is the smallest eigenvalue of

(2.2) w,αα + λ̂w = 0 in D, w = 0 on ∂D.

Lower bounds for λ are well known (see [9]).
We also make use of the following lemma.

Lemma. Let R be a bounded simply connected region in R
3 with Lipschitz

boundary ∂R. Then, given any a Dirichlet integrable function v satisfying∫
R vdx = 0, there exists a vector field with components χi (i = 1, 2, 3) which

is Dirichlet integrable and vanishes on ∂R and a dimensionless constant C
depending only on the geometry of R such that

(2.3) χj,j = v in R

and

(2.4)

∫

R

χi,jχi,jdx ≤ C

∫

R

[χj,j ]
2dx.

This lemma is established by Ladyzhenskaya and Solonnikov [7] and in two
dimensions this inequality by Babusuka and Aziz [2] (see also Horgan and
Wheeler [6]). Recently, a bound for the optimal constant C is obtained by
Payne [10].

3. Decay bounds

We now consider the energy expression for any finite positive constants k1
and k2,

(3.1)

F (z, t) =

∫ t

0

∫

Rz

(ξ − z)wi,jwi,j dxdη + k1

∫ t

0

∫

Rz

(ξ − z)wi,ηwi,η dxdη

+ k2

∫ t

0

∫

Rz

(ξ − z)T,iT,i dxdη

= I1 + I2 + I3,

where positive parameters k1 and k2 are to be determined later. By assumption
(1.18), F (z, t) is clearly bounded. Our goal is to show that for specific choices
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of k1 and k2, F (z, t) actually decays exponentially in z. Upon integration by
parts and using (1.12)-(1.16), we obtain

I1 = −

∫ t

0

∫

Rz

wiwi,3 dxdη +

∫ t

0

∫

Rz

w3q dxdη +

∫ t

0

∫

Rz

(ξ − z)wigiT dxdη

(3.2)

−
1

2

∫

Rz

(ξ − z)wiwidx
∣∣
η=t

,

I2 = k1

∫ t

0

∫

Rz

w3,ηq dxdη − k1

∫ t

0

∫

Rz

wi,ηwi,3 dxdη

(3.3)

+ k1

∫ t

0

∫

Rz

(ξ − z)wi,ηgiT dxdη −
k1
2

∫

Rz

(ξ − z)wi,jwi,jdx
∣∣
η=t

,

I3 = −k2

∫ t

0

∫

Rz

TT,3 dxdη +
k2
2

∫ t

0

∫

Rz

(w3 + v3)T
2 dxdη −

k2
2

∫

Rz

T 2dx.

(3.4)

In bounding I3, we assume that the velocity is uniformly bounded in R. This
allows us to conclude that T satisfies a maximum principle in R. Integrating by
parts, applying Schwarz’s inequality, the arithmetic-geometric mean inequality,
and (2.1) in (3.2)-(3.4), and dropping negative terms, we have

I1 ≤

(
1

λ

∫ t

0

∫

Rz

wi,αwi,α dxdη

)1/2 (∫ t

0

∫

Rz

wi,3wi,3 dxdη

)1/2

+

∫ t

0

∫

Rz

w3q dxdη

+
g

λ

(∫ t

0

∫

Rz

(ξ − z)wi,jwi,j dxdη

)1/2(∫ t

0

∫

Rz

(ξ − z)T,iT,i dxdη

)1/2

,

I2 ≤ k1

∫ t

0

∫

Rz

w3,ηq dxdη − k1

∫ t

0

∫

Rz

wi,ηwi,3 dxdη

+ k1

(∫ t

0

∫

Rz

(ξ − z)wi,ηwi,η dxdη

)1/2(
g2

λ

∫ t

0

∫

Rz

(ξ − z)T,iT,i dxdη

)1/2

,

I3 ≤ k2

(
1

λ

∫ t

0

∫

Rz

T,αT,α dxdη

)1/2 (∫ t

0

∫

Rz

T,3T,3 dxdη

)1/2

+
k2TM

2

(∫ t

0

∫

Rz

w2

3 dxdη

)1/2 (
1

λ

∫ t

0

∫

Rz

T,αT,α dxdη

)1/2

+
k2|V |M

2λ

∫ t

0

∫

Rz

T,αT,α dxdη,
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where

g = max
D

(gigi)
1/2, TM = max

D×{t>0}
F (x1, x2, t), |V |M = |V |max,

with |V |M given in [8]. Substituting the bounds for I1, I2, and I3 into (3.1),
we have

(3.5)

(
1−

ǫ1
2λ

) ∫ t

0

∫

Rz

(ξ − z)wi,jwi,j dxdη

+ k1

(
1−

ǫ2
2λ

) ∫ t

0

∫

Rz

(ξ − z)wi,ηwi,η dxdη

+

(
k2 −

g2

2ǫ1λ
−

k1g
2

2ǫ2λ

)∫ t

0

∫

Rz

(ξ − z)T,iT,i dxdη

≤
1
√
λ

∫ t

0

∫

Rz

wi,jwi,j dxdη +

∫ t

0

∫

Rz

w3q dxdη + k1

∫ t

0

∫

Rz

w3,ηq dxdη

− k1

∫ t

0

∫

Rz

wi,ηwi,3 dxdη +
k2

2
√
λ

∫ t

0

∫

Rz

T,iT,i dxdη

+
k2TM

2

(∫ t

0

∫

Rz

w2

3 dxdη

)1/2 (
1

λ

∫ t

0

∫

Rz

T,αT,α dxdη

)1/2

+
k2|V |M

2λ

∫ t

0

∫

Rz

T,αT,α dxdη

for positive constants k1 and k2 to be specified. Choosing

(3.6) k1 =
1

λ
, k2 =

1

2
+

g2

λ2
, ǫ1 = λ, ǫ2 = 1,

we have

1

2

∫ t

0

∫

Rz

(ξ − z)wi,jwi,j dxdη +
1

2λ

∫ t

0

∫

Rz

(ξ − z)wi,ηwi,η dxdη(3.7)

+
1

2

∫ t

0

∫

Rz

(ξ − z)T,iT,i dxdη

≤
1
√
λ

∫ t

0

∫

Rz

wi,jwi,j dxdη +

∫ t

0

∫

Rz

u3q dxdη + k1

∫ t

0

∫

Rz

w3,ηq dxdη

− k1

∫ t

0

∫

Rz

wi,ηwi,3 dxdη +
k2

2
√
λ

∫ t

0

∫

Rz

T,iT,i dxdη

+
k2TM

2

(∫ t

0

∫

Rz

w2

3 dxdη

)1/2 (
1

λ

∫ t

0

∫

Rz

T,αT,α dxdη

)1/2

+
k2|V |M

2λ

∫ t

0

∫

Rz

T,αT,α dxdη.
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We now set

(3.8)

E(z, t) =
1

2

∫ t

0

∫

Rz

(ξ − z)wi,jwi,j dxdη+
1

2λ

∫ t

0

∫

Rz

(ξ − z)wi,ηwi,η dxdη

+
1

2

∫ t

0

∫

Rz

(ξ − z)T,iT,i dxdη

from which we seek to derive a first-order differential inequality. We, therefore,
bound the terms on the right in (3.7) in terms of −∂E

∂z . Upon Schwarz’s in-
equality and the arithmetic-geometric mean inequality, we can easily estimate
most of terms except for the two terms involving the pressure. To seek a bound

for
∫ t

0

∫
Rz

w3q dxdη, we note that, for any z ≥ 0,
∫

Rz

w3dx = 0.

Accordingly by Lemma, there exists a vector function χi such that

(3.9) χi,i = w3 in Rz, χi = 0 on ∂Rz

and for χi inequality (2.4) holds. Using this χi and (2.4), we have
∫ t

0

∫

Rz

w3q dxdη =

∫ t

0

∫

Rz

χi(wi,η −∆wi − giT ) dxdη

≤

(∫ t

0

∫

Rz

χiχi dxdη

)1/2 (∫ t

0

∫

Rz

wi,ηwi,η dxdη

)1/2

+

(∫ t

0

∫

Rz

χi,jχi,j dxdη

)1/2 (∫ t

0

∫

Rz

wi,jwi,j dxdη

)1/2

+ g

(∫ t

0

∫

Rz

χiχi dxdη

)1/2 (∫ t

0

∫

Rz

T 2 dxdη

)1/2

.

By (2.1), we proceed to bound
(3.10)

∫ t

0

∫

Rz

w3q dxdη ≤

(
C

λ

∫ t

0

∫

Rz

w2

3 dxdη

)1/2 (∫ t

0

∫

Rz

wi,ηwi,η dxdη

)1/2

+

(
C

∫ t

0

∫

Rz

w2

3 dxdη

)1/2 (∫ t

0

∫

Rz

wi,jwi,j dxdη

)1/2

+
g

λ

(
C

∫ t

0

∫

Rz

w2

3 dxdη

)1/2 (∫ t

0

∫

Rz

T,iT,i dxdη

)1/2

≤ A

(
−
∂E

∂z

)
,

where A = 2
√

C
λ

(
2 + g

λ

)
.
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For
∫ t

0

∫
Rz

w3,ηq dxdη, with a derivation similar to (3.10), we obtain

(3.11)
∫ t

0

∫

Rz

w3,ηq dxdη ≤

(
C

λ

∫ t

0

∫

Rz

w2

3,η dxdη

)1/2 (∫ t

0

∫

Rz

wi,ηwi,η dxdη

)1/2

+

(
C

∫ t

0

∫

Rz

w2

3,η dxdη

)1/2 (∫ t

0

∫

Rz

wi,jwi,j dxdη

)1/2

+
g

λ

(
C

∫ t

0

∫

Rz

w2

3,η dxdη

)1/2 (∫ t

0

∫

Rz

T,iT,i dxdη

)1/2

≤ B

(
−
∂E

∂z

)
,

where B = 2
√
C
(
2
√
λ + g

λ3/2

)
. On applying Schwarz’s inequality, the arith-

metic-geometric mean inequality, (2.1), and (2.4) on the other remaining terms
on the right in (3.7), it then follows that

(3.12) E(z, t) ≤ K

(
−
∂E

∂z

)
,

where K is a computable constant. Upon integration we have

(3.13) E(z, t) ≤ E(0, t)e−z/K .

In order to make the exponential decay inequality (3.13) explicit, we require
a bound for E(0, t) in terms of the boundary data. In the next section we will
indicate a procedure for obtaining bounds for the total weighed energy E(0, t).

4. Bounds for E(0, t)

In this section we sketch how one can derive the total energy needed to
complete our decay results.

We first note from (3.12) that

(4.1) E(0, t) ≤ −K
∂E

∂z
(0, t).

Thus, we must bound −∂E
∂z (0, t), which implies that we need to bound

∫ t

0

∫

R

T,iT,i dxdη,

∫ t

0

∫

R

wi,ηwi,η dxdη,

∫ t

0

∫

R

wi,jwi,j dxdη.

We first derive a bound for
∫ t

0

∫
R T,iT,i dxdη in terms of

∫ t

0

∫
R wi,jwi,j dxdη,

then seek a bound for
∫ t

0

∫
R wi,jwi,j dxdη in terms of data, and finally bound∫ t

0

∫
R wi,ηwi,η dxdη in terms of data. We will use arguments similar to those
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employed in [11, 13, 12] to bound
∫ t

0

∫
R T,iT,i dxdη. Thus

(4.2)

∫ t

0

∫

R

T,iT,i dxdη

= −

∫ t

0

∫

D

FT,3 dAdη −

∫ t

0

∫

R

T (T,η + uiT,i) dxdη

= −

∫ t

0

∫

D

FT,3 dAdη +
1

2

∫ t

0

∫

D

f3F
2 dAdη −

1

2

∫

R

T 2dx
∣∣∣
η=t

.

To bound the first term in (4.2) we set

(4.3) S = F (x1, x2, t)e
−γz

for some positive γ. Then

−

∫ t

0

∫

D

FT,3 dAdη

=

∫ t

0

∮

∂R

ST,inidsdη

=

∫ t

0

∫

R

S,iT,i dxdη +

∫ t

0

∫

R

S(T,η + uiT,i) dxdη

=

∫ t

0

∫

R

S,iT,i dxdη +

∫

R

STdx
∣∣
η=t

−

∫ t

0

∫

R

TS,η dxdη

−

∫ t

0

∫

R

S,i(wi + vi)T dxdη,

(4.4)

where ds is the element of surface area on ∂R. Inserting (4.4) into (4.2) and
using the arithmetic-geometric mean inequality and the inequality (2.1) we
have for some positive ǫ̂1, ǫ̂2, and ǫ̂3

[
1−

(
ǫ̂1
2

+
ǫ̂2
2

+
ǫ̂3
2

)]∫ t

0

∫

R

T,iT,i dxdη

≤

(
1

2ǫ̂1
+

|V |2M
2λǫ̂3

)∫ t

0

∫

R

S,iS,i dxdη +
1

2λǫ̂2

∫ t

0

∫

R

S2

,η dxdη

+
1

2

∫

R

S2dx
∣∣
η=t

+ TM

(∫ t

0

∫

R

S,iS,i dxdη

∫ t

0

∫

R

wiwi dxdη

)1/2

+ data.

(4.5)

Choosing ǫ̂1 = 1/2, ǫ̂2 = 1/4, ǫ̂3 = 1/4, by (2.1) and the arithmetic-geometric
mean inequality we can write for some positive ǫ

(4.6)

∫ t

0

∫

R

T,iT,i dxdη ≤ ǫ

∫ t

0

∫

R

wi,jwi,j dxdη + data,

where the data involve parameters λ, TM , |V |M and
∫ t

0

∫
R
S,iS,i dxdη,∫ t

0

∫
R S2

,η dxdη,
∫
R S2dx

∣∣∣
η=t

and
∫ t

0

∫
D f3F

2 dAdη which are clearly data.
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To obtain a bound for
∫ t

0

∫
R wi,jwi,j dxdη, by the triangle inequality we have

∫ t

0

∫

R

wi,jwi,j dxdη ≤ 2

∫ t

0

∫

R

(wi − w̃i),j(wi − w̃i),j dxdη

+ 2

∫ t

0

∫

R

w̃i,jw̃i,j dxdη,

(4.7)

where

(4.8) w̃i = [fi(x1, x2, t)− V δi3]e
−σz

for some positive σ. Using integration by parts and the lateral surface boundary
condition (1.5), we obtain

(4.9)

∫ t

0

∫

R

(wi − w̃i),j(wi − w̃i),j dxdη

= −

∫ t

0

∫

R

(wi − w̃i)∆(wi − w̃i) dxdη

= −

∫ t

0

∫

R

(wi − w̃i)[(wi,η − w̃i,η) + q,i − giT + (w̃i,η −∆w̃i)] dxdη.

Upon integration by parts and application of Schwarz’s inequality, the arith-
metic-geometric mean inequality and (2.1), we find for some positive γ1 and
γ2,

(
1−

γ1 + γ2
2λ

)∫ t

0

∫

R

(wi − w̃i),j(wi − w̃i),j dxdη

≤
g

2γ1λ

∫ t

0

∫

R

T,iT,i dxdη +
1

2γ2

∫ t

0

∫

R

(w̃i,η −∆w̃i)(w̃i,η −∆w̃i) dxdη + data.

(4.10)

Substituting (4.7) into (4.6) and inserting the result back into (4.10), we con-
clude that

(4.11)

(
1−

γ1 + γ2
2λ

−
gǫ

γ1λ

)∫ t

0

∫

R

(wi − w̃i),j(wi − w̃i),j dxdη ≤ data.

Choosing γ1 = λ/4, γ2 = λ/4, ǫ = γ1λ/(4g) and combining (4.7), we have

(4.12)

∫ t

0

∫

R

wi,jwi,j dxdη ≤ data.

It then follows from (4.6) that we find

(4.13)

∫ t

0

∫

R

T,iT,i dxdη ≤ data.
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Turning now to the bound for
∫ t

0

∫
R wi,ηwi,η dxdη, by the triangle inequality

we have
(∫ t

0

∫

R

wi,ηwi,η dxdη

)1/2

≤

(∫ t

0

∫

R

(wi − w̃i),η(wi − w̃i),η dxdη

)1/2

+

(∫ t

0

∫

R

w̃i,ηw̃i,η dxdη

)1/2

.

(4.14)

We first note that
∫ t

0

∫

R

(wi − w̃i),η(wi − w̃i),η dxdη

=

∫ t

0

∫

R

(wi − w̃i),η(−q,i +∆(wi − w̃i + w̃i) + giT − w̃i,η) dxdη.

(4.15)

An application of Schwarz’s inequality and the arithmetic-geometric mean in-
equality gives for some positive δ1, δ2 and δ3

(4.16)

(
1−

δ1 + δ2 + δ3
2

)∫ t

0

∫

R

(wi − w̃i),η(wi − w̃i),η dxdη

≤
1

2δ1

∫ t

0

∫

R

∆w̃i∆w̃i dxdη +
g2

2δ2

∫ t

0

∫

R

T 2 dxdη

+
1

2δ3

∫ t

0

∫

R

w̃i,ηw̃i,η dxdη,

where we have dropped a negative spatial integral term. For instance, taking
δ1 = 1/4, δ2 = 1/2, δ3 = 1/4 and using (2.1), we find

(4.17)

∫ t

0

∫

R

(wi − w̃i),η(wi − w̃i),η dxdη ≤
2g2

λ

∫ t

0

∫

R

T,iT,i dxdη + data.

Combining (4.6), (4.14), and (4.17), we have

(4.18)

∫ t

0

∫

R

wi,ηwi,η dxdη ≤ data.

When these results (4.12), (4.13), and (4.18) are inserted into (4.1), the
bound for E(0, t) in terms of data is obtained.
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