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A NOTE ON HOFER’S NORM

YonG SEUNG CHO, JIN Ho KwAK, AND JIN YUE YOON

ABSTRACT. We show that when (M,w) is a closed, simply con-
nected, symplectic manifold for all ¥ € m;(Ham(M), i¢d) the follow-
ing inequality holds:

vl > sup|A(Z)],

where ||v|| is the coarse Hofer’s norm, Z run over all extensions
to D? of an orbit z(t) = w:(z) of a fixed point z € M, A(Z) the
symplectic action of Z, and the Hamiltonian diffeomorphisms {¢:}
of M represent ~.

1. Introduction

Let (M,w) be a 2n-dimensional symplectic manifold. Then we can
associate to a smooth 1-periodic Hamiltonian function H : S x M — R
the Hamiltonian vector field Xt : M - TM,te S 1 which is defined by
w(X%, ) = —dH(") with Hy(z) = H(t,z) for z € M. The Hamiltonian
vector field X%, generates the Hamiltonian flow ¢; via %got = X% o ¢,
¢o = td. We denote by Ham(M) the group of Hamiltonian diffeomor-
phisms of M. Its Lie algebra is the space of Hamiltonian vector fields,
which is identified with the space of all smooth Hamiltonian functions
on 8! x M satisfying the following normalization condition, where in
the case of a compact manifold M the function is only unique up to
an additive constant. A function H is said to satisfy a normalization
condition if H is compactly supported when M is open, for all t € S*
the mean value of H(t,-) over M vanishes, i.e., [, H(t, z)w™ = 0 when
M is closed.
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Now let (M, w) be a 2n-dimensional, closed, simply connected, sym-
plectic manifold. Let {¢;};cq1, wo = 1 = id be a loop of Hamiltonian
diffeomorphisms of M, and let H : S! x M — R be the associated nor-
malized 1-periodic Hamiltonian function. For a point z € M consider its
orbit z(t) = ¢4(z). Since M is simply connected the map z : S — M is
contractible, and hence it can be extended to a map % : D? — M. Then
the symplectic action of Z is defined by

1
A(Z) = —/ T'w +/ H(t,z(t))dt.
D? 0
For an element v € m;(Ham(M),id) define its coarse Hofer’s norm by

= inf H(t,2)],
1] inf tegnl’aéMl (t, 2)]

where H run over all normalized 1-periodic Hamiltonian functions St x
M — R generating a loop of Hamiltonian diffeomorphisms which repre-
sents . In this notes we induce an inequality between the coarse Hofer’s
norm for y € my(Ham(M),id) and the absolute value of the symplectic
action of z defined above.

2. Symplectic fibrations

Let (M,w) be a 2n-dimensional, closed, symplectic manifold. De-
note by Symp(M) the group of symplectic diffeomorphisms of M. Let
{®t}iests wo = w1 = id be a loop of symplectic diffeomorphisms of M
which represents v € 71 (Symp(M), id). Consider two copies D_ and D
of the disc D? bounded by S?, and amap ¥ : M x S! — M x S1 given by
(2,t) = (¢t2,t). Choose the orientation of S? induced from D, . Then
we obtain a symplectic fibration p : Py = (M x D_)Ug (M x D}) — 52
with fiber (M,w). When we consider only loops of Hamiltonian dif-
feomorphisms of M the symplectic fibration is said to be Hamiltonian
symplectic fibration. In [1] there exists a unique class in H?(P,;R) such
that its restriction to fibers coincides with [w] and its top power van-
ishes. This cohomology class is said to be the coupling class, which can
be written as [wW'] + c-p*a, where o' is a 2-form on P, satisfying /, = w
for z € S? on the fiber, a € H?(S?%;Z) the positive generator, and ¢ a
constant.
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3. Weak coupling

Let p : P, — S? be a Hamiltonian symplectic fibration with fiber
(M, w), which is associated with a loop {¢:} of Hamiltonian diffeomor-
phisms representing an element v € 71 (Ham(M),id). Let H : S'x M —
R be the associated normalized 1-periodic Hamiltonian function. Let
¢y, € H%(P,;R) be the coupling class and a the positive generator of
H?(5%,7Z). The weak coupling construction says that for a sufficiently
small € > 0 there exists a smooth family of closed 2-forms {w;}, t € [0, €)
on P, with the following properties:

1. wp is the lift of an area form on S2,

2. [we] =tcy + pra,

3. the restriction of w; to each fiber of P, coincides with tw,
4. w; is symplectic for ¢ > 0.

See [1] for details.

4. Coupling form

Let p : P, — S? be a symplectic fibration with a 2n-dimensional
closed symplectic manifold (M, w) as its fiber. At each point (z,z) € Py
denote by Vert(, )y = ker dp(z,z) = T{, . (Py): the vertical tangent
space to the fiber. A connection v on p : P, — 52 is a field of hori-
zontal subspaces Hor(, ;) C T, )P, such that TP, = Vert @ Hor. The
connection v is said to be symplectic if the parallel transport preserves
symplectic forms on fibers. The curvature p, of v is a 2-form on the base
which takes values in the Lie algebra of the group of symplectic diffeo-
morphims of fiber. A symplectic connection is said to be Hamiltonian
if its curvature p, takes values in the space of Hamiltonian vector fields
on the fiber (M,w). We call such a connection a Hamiltonian symplec-
" tic connection. In view of the identification in Section 1 one can view
p(x)(E M), &, n € TpS?%, as a Hamiltonian function on the fiber with
the normalization condition.

In [1] and [2] the coupling form, say §,, of a Hamiltonian symplectic
connection v is the unique closed 2-form on P, such that the restriction
to each fiber coincides with the symplectic form, which gives rise to a
connection v with horizontal distribution

Hor(, .y = Verts , = {£ € To)Py | 6,(&,m) =0 Vn € Vert, ,y},

(z,x
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and the image of its top power under the fiber integration map
FI : QXD (p) — 02(S?)

vanishes, i.e., FI((6,)" 1) (z)(&,n) = f(P'y)z UE A6, = 0, where

&, n € TpS2%, and §~ , 7 their horizontal lifts to the points of the fiber (P,),
over z. In order to represent the coupling form 6, explicitly we refer to
[3]-

Introduce polar coordinates (u,t) on D?, where u € [0, 1] is the radius,
and t is the angle mod 1. Take a monotone cut-off function 1 on [0, 1]
such that 1(u) = 0 for u near 0, ¥(u) = 1 for u near 1, and |¢'(u)| < 1+€
for all u and a small positive number €. Consider a 2-form on P, which
iswon M x D_, and w+ ¢'(-)H(t,¢(-))p*T on M x D,, where 7 is
a 2-form on S? representing the positive generator a of H%(5%,Z). It
is closed and its restriction to each fiber coincides with the symplectic
form w.

One can check that it gives rise to a connection and that the image
of its top power under the fiber integration map vanishes. Moreover,
the following calculation using the definition of 1 and the fact that H
is normalized shows that the above 2-form is the coupling form, say é,,
which represents the coupling class ¢, € H 2(P73 R):

Je, 007 = Juxp. @+ fuxp, W + Y @HE, n(2))p ]
= foD+ w™ A (W) H(, ¢e(2))p" T
= Juxp, A" Ap(w)H(E, p:(2)) di)

Iy Iy ()

It was proved in 1] and [2] that the coupling form can be written as
8, = W & —py, where TP, = Vert & Hor is the splitting associated
to the connection v on Py, and p, the curvature of v. When the fiber
(M,w) of the Hamiltonian symplectic fibration p : P, — S? is simply
connected we can take an extension Z : D* — M of amap z: S* — M
representing an orbit z(¢) = ¢¢(zp) of a point zp € M. Define a section
5:5% > P, by

swo={ Fond o P
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Using ¢y = [W'] + ¢ p*a we find (s*c,,[S?]) = c. On the other hand
(s*cy,[S%]) = fD+ §*6, — [ %6,
= fD+ d/(u)H(ta ‘Pt(z))T - fD2 T'w
= W o H(teul2))dt — [0 3w

= A(z),
and hence we get the following theorem.
THEOREM 4.1. ¢, = [W'] + A(Z) - p*a.

Now consider vector fields a% and % on D, to compute the curvature

o, of the connection v. Their horizontal lifts to P, are % and ;% —
Y(u)Xp(t, p¢(2)). Thus at all (u,t) € Dt and for all z € M, we finds

that a 9 J 0 Vert
Pu(ze 30)(2) = Iz 5 — V(W) Xg(t, @i(2))]V"
= ¢ (W)Xa(t, ei(2)).
Since H is normalized and T(u,t)(a—ad, %) = 1, p,(z) is identified with
~y/(-)H(t,v:(2))7, and hence
& = 6] = Wa—p)
= [W]+ ¢ ()H(E, pi())p*a.
From this result and Theorem 4.1 we finds
7)| < ! . H| < )
|4(@)] < max[¢)'(u)| - max |H| < (1+¢) max |H|

Since € can be taken arbitrarily small, we have |A(Z)| < max |H|.
X

Since H and Z are also arbitrary, we get the following theorem which
we want to prove.

THEOREM 4.2. Let (M,w) be a closed, simply connected, symplectic
manifold. Then for all y € m(Ham(M),id)

IVl > sup|A(z)],

where I run over all extensions to D? of an orbit x in M.

If the manifold (M,w) is weakly exact, then the symplectic action
A(Z) is independent of the choice of the extensions Z of the orbit z in
M. Thus the A(Z) is constant on the extensions Z of the x, and then
we denote the action by A(z).

COROLLARY 4.3. If (M,w) is a closed, simply connected, weakly ex-
act, symplectic manifold, then for all v € m1(Ham(M),id) we have an

Inequality:
Il = [A(=)].
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