A NOTE ON HOFER'S NORM

YONG SEUNG CHO, JIN HO KWAK, AND JIN YUE YOON

ABSTRACT. We show that when (M, ω) is a closed, simply connected, symplectic manifold for all $\gamma \in \pi_1(\operatorname{Ham}(M), id)$ the following inequality holds:

$$\|\gamma\| \ge \sup_{ar{x}} |A(ar{x})|,$$

where $\|\gamma\|$ is the coarse Hofer's norm, \bar{x} run over all extensions to D^2 of an orbit $x(t) = \varphi_t(z)$ of a fixed point $z \in M$, $A(\bar{x})$ the symplectic action of \bar{x} , and the Hamiltonian diffeomorphisms $\{\varphi_t\}$ of M represent γ .

1. Introduction

Let (M,ω) be a 2n-dimensional symplectic manifold. Then we can associate to a smooth 1-periodic Hamiltonian function $H:S^1\times M\to \mathbb{R}$ the Hamiltonian vector field $X_H^t:M\to TM,\,t\in S^1$, which is defined by $\omega(X_H^t,\cdot)=-dH_t(\cdot)$ with $H_t(z)=H(t,z)$ for $z\in M$. The Hamiltonian vector field X_H^t generates the Hamiltonian flow φ_t via $\frac{d}{dt}\varphi_t=X_H^t\circ\varphi_t,$ $\varphi_0=id$. We denote by $\operatorname{Ham}(M)$ the group of Hamiltonian diffeomorphisms of M. Its Lie algebra is the space of Hamiltonian vector fields, which is identified with the space of all smooth Hamiltonian functions on $S^1\times M$ satisfying the following normalization condition, where in the case of a compact manifold M the function is only unique up to an additive constant. A function H is said to satisfy a normalization condition if H is compactly supported when M is open, for all $t\in S^1$ the mean value of $H(t,\cdot)$ over M vanishes, i.e., $\int_M H(t,z)\omega^n=0$ when M is closed.

Received January 7, 2002.

²⁰⁰⁰ Mathematics Subject Classification: Primary 37K65; Secondary 53D05.

Key words and phrases: symplectic manifold, Hamiltonian diffeomorphism, coarse Hofer's norm, symplectic action, coupling form.

This work was partially supported by Combinatorial and Computational Mathematics Center ($Com^2MaC\text{-}KOSEF$), and the MOST through National R and D program 2002 for Women's Universities.

Now let (M,ω) be a 2n-dimensional, closed, simply connected, symplectic manifold. Let $\{\varphi_t\}_{t\in S^1}$, $\varphi_0=\varphi_1=id$ be a loop of Hamiltonian diffeomorphisms of M, and let $H:S^1\times M\to \mathbb{R}$ be the associated normalized 1-periodic Hamiltonian function. For a point $z\in M$ consider its orbit $x(t)=\varphi_t(z)$. Since M is simply connected the map $x:S^1\to M$ is contractible, and hence it can be extended to a map $\bar x:D^2\to M$. Then the symplectic action of $\bar x$ is defined by

$$A(\bar{x}) = -\int_{D^2} \bar{x}^* \omega + \int_0^1 H(t, x(t)) dt.$$

For an element $\gamma \in \pi_1(\operatorname{Ham}(M), id)$ define its coarse Hofer's norm by

$$\|\gamma\|=\inf_{H}\max_{t\in S^1,\,z\in M}|H(t,z)|,$$

where H run over all normalized 1-periodic Hamiltonian functions $S^1 \times M \to \mathbb{R}$ generating a loop of Hamiltonian diffeomorphisms which represents γ . In this notes we induce an inequality between the coarse Hofer's norm for $\gamma \in \pi_1(\operatorname{Ham}(M),id)$ and the absolute value of the symplectic action of \bar{x} defined above.

2. Symplectic fibrations

Let (M,ω) be a 2n-dimensional, closed, symplectic manifold. Denote by $\operatorname{Symp}(M)$ the group of symplectic diffeomorphisms of M. Let $\{\varphi_t\}_{t\in S^1},\ \varphi_0=\varphi_1=id$ be a loop of symplectic diffeomorphisms of M which represents $\gamma\in\pi_1(\operatorname{Symp}(M),id)$. Consider two copies D_- and D_+ of the disc D^2 bounded by S^1 , and a map $\Psi:M\times S^1\to M\times S^1$ given by $(z,t)\mapsto (\varphi_tz,t)$. Choose the orientation of S^2 induced from D_+ . Then we obtain a symplectic fibration $p:P_\gamma=(M\times D_-)\cup_\Psi(M\times D_+)\to S^2$ with fiber (M,ω) . When we consider only loops of Hamiltonian diffeomorphisms of M the symplectic fibration is said to be Hamiltonian symplectic fibration. In [1] there exists a unique class in $H^2(P_\gamma;\mathbb{R})$ such that its restriction to fibers coincides with $[\omega]$ and its top power vanishes. This cohomology class is said to be the coupling class, which can be written as $[\omega']+c\cdot p^*a$, where ω' is a 2-form on P_γ satisfying $\omega'_x=\omega$ for $x\in S^2$ on the fiber, $a\in H^2(S^2;\mathbb{Z})$ the positive generator, and c a constant.

3. Weak coupling

Let $p: P_{\gamma} \to S^2$ be a Hamiltonian symplectic fibration with fiber (M,ω) , which is associated with a loop $\{\varphi_t\}$ of Hamiltonian diffeomorphisms representing an element $\gamma \in \pi_1(\operatorname{Ham}(M),id)$. Let $H: S^1 \times M \to \mathbb{R}$ be the associated normalized 1-periodic Hamiltonian function. Let $c_{\gamma} \in H^2(P_{\gamma};\mathbb{R})$ be the coupling class and a the positive generator of $H^2(S^2;\mathbb{Z})$. The weak coupling construction says that for a sufficiently small $\epsilon > 0$ there exists a smooth family of closed 2-forms $\{\omega_t\}$, $t \in [0,\epsilon)$ on P_{γ} with the following properties:

- 1. ω_0 is the lift of an area form on S^2 ,
- $2. \ [\omega_t] = tc_{\gamma} + p^*a,$
- 3. the restriction of ω_t to each fiber of P_{γ} coincides with $t\omega$,
- 4. ω_t is symplectic for t > 0.

See [1] for details.

4. Coupling form

Let $p:P_{\gamma}\to S^2$ be a symplectic fibration with a 2n-dimensional closed symplectic manifold (M,ω) as its fiber. At each point $(z,x)\in P_{\gamma}$ denote by $\mathrm{Vert}_{(z,x)}=\ker dp(z,x)=T_{(z,x)}(P_{\gamma})_x$ the vertical tangent space to the fiber. A connection ν on $p:P_{\gamma}\to S^2$ is a field of horizontal subspaces $\mathrm{Hor}_{(z,x)}\subset T_{(z,x)}P_{\gamma}$ such that $TP_{\gamma}=\mathrm{Vert}\oplus\mathrm{Hor}$. The connection ν is said to be symplectic if the parallel transport preserves symplectic forms on fibers. The curvature ρ_{ν} of ν is a 2-form on the base which takes values in the Lie algebra of the group of symplectic diffeomorphims of fiber. A symplectic connection is said to be Hamiltonian if its curvature ρ_{ν} takes values in the space of Hamiltonian vector fields on the fiber (M,ω) . We call such a connection a Hamiltonian symplectic connection. In view of the identification in Section 1 one can view $\rho_{\nu}(x)(\xi,\eta),\ \xi,\ \eta\in T_xS^2$, as a Hamiltonian function on the fiber with the normalization condition.

In [1] and [2] the coupling form, say δ_{ν} , of a Hamiltonian symplectic connection ν is the unique closed 2-form on P_{γ} such that the restriction to each fiber coincides with the symplectic form, which gives rise to a connection ν with horizontal distribution

$$\operatorname{Hor}_{(z,x)} = \operatorname{Vert}_{(z,x)}^{\delta_{\nu}} = \{ \xi \in T_{(z,x)} P_{\gamma} \mid \delta_{\nu}(\xi,\eta) = 0 \ \forall \eta \in \operatorname{Vert}_{(z,x)} \},$$

and the image of its top power under the fiber integration map

FI :
$$\Omega^{2(n+1)}(P_{\gamma}) \to \Omega^2(S^2)$$

vanishes, i.e., $\operatorname{FI}((\delta_{\nu})^{n+1})(x)(\xi,\eta) = \int_{(P_{\gamma})_x} \iota(\tilde{\xi} \wedge \tilde{\eta})(\delta_{\nu})^{n+1} = 0$, where $\xi, \eta \in T_x S^2$, and $\tilde{\xi}, \tilde{\eta}$ their horizontal lifts to the points of the fiber $(P_{\gamma})_x$ over x. In order to represent the coupling form δ_{ν} explicitly we refer to [3].

Introduce polar coordinates (u,t) on D^2 , where $u \in [0,1]$ is the radius, and t is the angle mod 1. Take a monotone cut-off function ψ on [0,1] such that $\psi(u) = 0$ for u near 0, $\psi(u) = 1$ for u near 1, and $|\psi'(u)| \leq 1 + \epsilon$ for all u and a small positive number ϵ . Consider a 2-form on P_{γ} which is ω on $M \times D_{-}$, and $\omega + \psi'(\cdot)H(t,\varphi_t(\cdot))p^*\tau$ on $M \times D_{+}$, where τ is a 2-form on S^2 representing the positive generator a of $H^2(S^2;\mathbb{Z})$. It is closed and its restriction to each fiber coincides with the symplectic form ω .

One can check that it gives rise to a connection and that the image of its top power under the fiber integration map vanishes. Moreover, the following calculation using the definition of ψ and the fact that H is normalized shows that the above 2-form is the coupling form, say δ_{ν} , which represents the coupling class $c_{\gamma} \in H^2(P_{\gamma}; \mathbb{R})$:

$$\begin{array}{ll} \int_{P_{\gamma}} \delta_{\nu}^{n+1} & = & \int_{M \times D_{-}} \omega^{n+1} + \int_{M \times D_{+}} [\omega + \psi'(u) H(t, \varphi_{t}(z)) p^{*}\tau]^{n+1} \\ & = & \int_{M \times D_{+}} \omega^{n} \wedge \psi'(u) H(t, \varphi_{t}(z)) p^{*}\tau \\ & = & \int_{M \times D_{+}} d(\omega^{n} \wedge \psi(u) H(t, \varphi_{t}(z)) \ dt) \\ & = & \int_{0}^{1} \int_{M} H(t, \varphi_{t}(z)) \omega^{n} dt \\ & = & 0. \end{array}$$

It was proved in [1] and [2] that the coupling form can be written as $\delta_{\nu} = \omega' \oplus -\rho_{\nu}$, where $TP_{\gamma} = \text{Vert} \oplus \text{Hor}$ is the splitting associated to the connection ν on P_{γ} , and ρ_{ν} the curvature of ν . When the fiber (M,ω) of the Hamiltonian symplectic fibration $p: P_{\gamma} \to S^2$ is simply connected we can take an extension $\bar{x}: D^2 \to M$ of a map $x: S^1 \to M$ representing an orbit $x(t) = \varphi_t(z_0)$ of a point $z_0 \in M$. Define a section $s: S^2 \to P_{\gamma}$ by

$$s(u,t) = \begin{cases} (z_0, u, t) & \text{on} & D_+, \\ (\bar{x}(u, t), u, t) & \text{on} & D_-. \end{cases}$$

Using $c_{\gamma} = [\omega'] + c \cdot p^*a$ we find $(s^*c_{\gamma}, [S^2]) = c$. On the other hand

$$\begin{array}{rcl} (s^*c_{\gamma},[S^2]) & = & \int_{D_+} s^*\delta_{\nu} - \int_{D_-} s^*\delta_{\nu} \\ & = & \int_{D_+} \psi'(u)H(t,\varphi_t(z))\tau - \int_{D^2} \bar{x}^*\omega \\ & = & [\psi(u)]_0^1 \int_0^1 H(t,\varphi_t(z))dt - \int_{D^2} \bar{x}^*\omega \\ & = & A(\bar{x}), \end{array}$$

and hence we get the following theorem.

Theorem 4.1. $c_{\gamma} = [\omega'] + A(\bar{x}) \cdot p^*a$.

Now consider vector fields $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial t}$ on D_+ to compute the curvature ρ_{ν} of the connection ν . Their horizontal lifts to P_{γ} are $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial t} - \psi(u)X_H(t,\varphi_t(z))$. Thus at all $(u,t) \in D^+$ and for all $z \in M$, we finds that

$$\begin{array}{lcl} \rho_{\nu}(\frac{\partial}{\partial u},\frac{\partial}{\partial t})(z) & = & [\frac{\partial}{\partial u},\frac{\partial}{\partial t}-\psi(u)X_{H}(t,\varphi_{t}(z))]^{\mathrm{Vert}} \\ & = & -\psi'(u)X_{H}(t,\varphi_{t}(z)). \end{array}$$

Since H is normalized and $\tau(u,t)(\frac{\partial}{\partial u},\frac{\partial}{\partial t})=1,\ \rho_{\nu}(z)$ is identified with $-\psi'(\cdot)H(t,\varphi_t(z))\tau$, and hence

$$c_{\gamma} = [\delta_{\nu}] = [\omega' \oplus -\rho_{\nu}]$$

= $[\omega'] + \psi'(\cdot)H(t, \varphi_t(\cdot))p^*a.$

From this result and Theorem 4.1 we finds

$$|A(\bar{x})| \leq \max_{u} |\psi'(u)| \cdot \max_{S^1 \times M} |H| \leq (1+\epsilon) \max_{S^1 \times M} |H|.$$

Since ϵ can be taken arbitrarily small, we have $|A(\bar{x})| \leq \max_{S^1 \times M} |H|$. Since H and \bar{x} are also arbitrary, we get the following theorem which we want to prove.

Theorem 4.2. Let (M, ω) be a closed, simply connected, symplectic manifold. Then for all $\gamma \in \pi_1(\operatorname{Ham}(M), id)$

$$\|\gamma\| \ \geq \ \sup_{\bar{x}} |A(\bar{x})|,$$

where \bar{x} run over all extensions to D^2 of an orbit x in M.

If the manifold (M, ω) is weakly exact, then the symplectic action $A(\bar{x})$ is independent of the choice of the extensions \bar{x} of the orbit x in M. Thus the $A(\bar{x})$ is constant on the extensions \bar{x} of the x, and then we denote the action by A(x).

COROLLARY 4.3. If (M, ω) is a closed, simply connected, weakly exact, symplectic manifold, then for all $\gamma \in \pi_1(\operatorname{Ham}(M), id)$ we have an inequality:

$$\|\gamma\| \geq |A(x)|.$$

References

- [1] V. Guillemin, E. Lerman, and S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, Cambridge University Press, 1996.
- [2] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Clarendon Press-Oxford, 1995.
- [3] L. Polterovich, Hamiltonian loops and Arnold's principle, Amer. Math. Soc. Transl. Ser 2, 180 (1997), 181–187.

YONG SEUNG CHO AND JIN YUE YOON, DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEOUL 120-750, KOREA

E-mail: yescho@ewha.ac.kr jyyoon@ewha.ac.kr

Jin Ho Kwak, Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea

E-mail : jinkwak@postech.ac.kr