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RIGIDITY OF COMPLETE RIEMANNIAN MANIFOLDS
WITH VANISHING BACH TENSOR

GUANGYUE HUANG AND BINGQING MA

ABSTRACT. For complete Riemannian manifolds with vanishing Bach ten-
sor and positive constant scalar curvature, we provide a rigidity theorem
characterized by some pointwise inequalities. Furthermore, we prove some
rigidity results under an inequality involving L% -norm of the Weyl cur-
vature, the traceless Ricci curvature and the Sobolev constant.

1. Introduction

In order to study conformal relativity, R. Bach [1] in early 1920s’ introduced
the following Bach tensor

(1.1) B = %_?)Wikjl,lk + ﬁ
where n > 4, W, and Ry; denote the Weyl curvature and the Ricci curvature,
respectively. A Bach tensor of the metric g is called a vanishing Bach tensor
if B;; = 0. The authors in [3,4,10] consider complete noncompact Riemann-
ian manifolds with vanishing Bach tensor and prove that M™ is of constant
curvature if the L?-norm of traceless Riemannian curvature tensor is small. In
[11], Kim studied complete noncompact Riemannian manifolds with harmonic
curvature and positive Sobolev constant, he obtained that M™, n > 5, is Ein-
stein if the L?-norm of the Weyl curvature and the traceless Ricci curvature
are small enough.

The aim of this paper is to achieve some rigidity results for complete Rie-
mannian manifolds with vanishing Bach tensor. In order to state our results,
throughout this paper, we always denote by R, Rw the scalar curvature and
the traceless Ricci curvature of M™(n > 4), respectively.
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Theorem 1.1. Let (M™, g) be a complete manifold with vanishing Bach tensor,
positive constant scalar curvature and

(1.2) / |Rij|2 < Q.
M
If
. R
(1.3) W+ ———Ric @g‘ <

V8n(n — 2) V2 —1)(n—-2)
then M™ is Einstein. In particular, when n = 4,5, M™ is of constant positive

sectional curvature.

Recall that the Sobolev constant Qg(M) is defined by

[ (VU + 225 Ryu?
A TP 1] (it = s )
0£uECE (M) (o lul72) "5

Moreover, there exist complete noncompact manifolds with negative scalar cur-
vature which have positive Sobolev constant. For example, any simply con-
nected complete manifold with Wi = 0 has positive Sobolev constant (see
[14]). Moreover, it is easy to see from (1.4), for any w,

n

n \ —2
1.5 M ) "< 24 % Ru?).
a5 Qn( [ w) T < [ (1vaP+ = Re?)
With the help of (1.5), we can achieve the following rigidity result:

Theorem 1.2. Let (M™, g) be a complete manifold with vanishing Bach tensor,
constant scalar curvature, Qq (M) > 0 and

(16) / |éij|2 < 0.
M

(1) If n > 7 and

Vn 3 3\ 2 2 2(n—1)
(e glrend’) < 2y S e
then M™ is Einstein;
(2) If4<n<6,R>0 and
Vn °, 3\ 2 n—1

then M™ is Einstein. In particular, for M™(n = 4,5) with positive constant
scalar curvature, it must be of constant sectional curvature.

It is well-known that there is no complete noncompact Einstein manifold
with positive constant scalar curvature. Hence, the following results follow
easily:
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Corollary 1.3. Suppose that (M™,g) is a complete noncompact Riemannian
manifold with vanishing Bach tensor and positive constant scalar curvature. If
(1.3) holds, then we have

(1.9) / IRic|? = .
M

Corollary 1.4. Let (M™, g) be a complete noncompact manifold with vanishing
Bach tensor and positive constant scalar curvature. If either n > 7 and (1.7),
or4 <n <6 and (1.8) holds, then we have

(1.10) /Lmﬁzm
M

Remark 1.1. The authors in [5,8] obtained some rigidity results similar to our
theorems for compact manifolds with vanishing Bach tensor. Our theorems can
be seen as a generalization to complete manifolds.

Remark 1.2. In [10, Theorem 2], Kim proved, for complete noncompact mani-
fold M* with vanishing Bach tensor and nonnegative constant scalar curvature,
that if there exists a constant ¢y small enough such that

(111) [ AW+l < o,
M
then M* is Einstein. When n = 4, our formula (1.8) becomes

1 2 3
1.12 ‘W+——Mc < 2Q2(M),
(1.12) [ | s sicd] < Gezon
which, compared with (1.11), shows that our Theorem 1.2 gives an upper bound
of ¢g, in some sense. Moreover, we also prove that for the upper bound %Qg (M)
given by (1.12), M* must be of constant sectional curvature if it has positive
constant scalar curvature.

2. Some lemmas

Recall that the Weyl curvature W;;,; is relate to the Riemannian curvature
Rijii by

1
(2.1) Wijkt = Rijr — nf(Rz‘kgjl — Rigji + Rjgir — Rjrgil)-

2

By virtue of Rw =R;; — %gij, (2.1) can be written as

1 o o o N
Wiikt = Rijr — 72(Rikgjl — Riugjr + Rjgir — Rjrgi)
(2.2) "

R e g
n(n — 1) 9ik9j51 — 9il9jk)-
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Since the divergence of the Weyl curvature tensor is related to the Cotton
tensor by

n—3
(2.3) Wijkig = —mcijlw
where the Cotton tensor is given by

1

Cijk = Riji — Riij — W(R,igjk — R ;gik)
(2.4) n_9
= Ryji — Riij + m(R,iQﬂe — R ;gir),
the formula (1.1) reduces to
1

(2.5) Bij = m(Ckij7k + Wiklekl).

We denote by p € M™ and B, a fixed point and the geodesic ball of M™ of
radius r centered at p, respectively. Let ¢, be the nonnegative cut-off function
defined on M™ satisfying

1, on B,;
(2.6) Or = n
0, on M™\B, 1,

with |V¢,.| <2 on By11\B;.
Inspired by [5, Lemma 2.2], we give the following estimate with respect to
R;; on a complete noncompact Riemannian manifold:

Lemma 2.1. Let (M™,g) be a complete noncompact Riemannian manifold
with constant scalar curvature. Then for any 8 € R, we have

en [ IVRsPe:
M
20
>
T 02+1+4¢
462 .
— s | R’V
61(02+1+€1)/1V[| J‘| ¢|

where €1 1S a positive constant.

.. nooe . 1 ,
/M (WijklRikle — mRinijm - ERW@\Z)#

Proof. By a direct calculation, we have

0< / |Rk]z - 9éki,j|2¢72~

(2.8) M

= (0" + 1)/ |VRi;|?¢2 — 29/ RyjiRyi jo2.
M M
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Using the Ricci identity and (2.2), we have
Rij.iRii = (Ri ji + Ry Rykis + Ricp Ryjij) B
(2.9) = Ry Rii Ryrij + ékpékiépi + E|133ij|2
= —WijuRin R + RURJ;CRM + —R|R”|Q

where we used the second Bianchi identity and Rij,j = 22R; = 0 from the
fact that R is constant. Hence, we obtain

— 20 / RyjiRyi 62
M

= 29/ ékj,ijéki¢f+29/ ékj,iéki(ﬁbg)j
M

= *20/ (kalekR]l - leRijkv R|R1j| )
(2.10) M
+20 / Ryj i Rii(02);
M
§ - 20/ (Wl]klR'Lk‘le - RzgRijkz - 7R|le| )
M
» 2.2 492 2
+ e ‘VRij| ¢7- |Rw| |V¢),«|
M
Applying (2.10) into (2.8) yields the des1red estimate (2.7). O

Lemma 2.2. Let (M™,g) be a complete noncompact Riemannian manifold
with constant scalar curvature. If the Bach tensor is ﬂat, we have

| 1o <
(2.11)

(2ka:lR]lek: RZ]R]]CR]C’L

——RRz 2) g2 + Rij 2|V,
L (1,62)/M| 2196
where €3 € (0,1) is a constant.

Proof. Using the formula (2.2), we can derive
o o 1 o o o
(2.12) RpRikj = RuWikji + mﬂRiﬂzgij — 2RirR;1) —
which shows
Ryjik = Ruiji + RijRigin + RiRijin
o o 1 - o
= Ry Rj + ;RRij - [Rleikjl

1

1. .
(2.13) + m(IR”\ 9ij — 2Rk Rji) — .y E—

RE]
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= Ry + %RR — BuWaj = — 1R Pgis.
Thus, from (2.4) and (2.13), we have
Chrijk = Aéij - ékj,ilc
(2.14) = AR;; — (%Rm}%k + ﬁRéij — RuWigi
- ﬁléiﬂzgz‘j)
and
0= (n—2)BijLki;
(2.15) = ChijuRij + Wikjléijékl
= Ry;AR;; — — 5 RijRjiRii — —R\lel + 2Wi Rij Ry,
which gives
(216)  RyBRy = " Ryl R+ —— RIRy[ — 2Wag Ry R
Thus,
/M VR, [P¢7 = — / RijARy;7 — / Rz‘jéia‘,k(éﬁ?)k
= / (2W2]k1Rﬂle R”Rijm R‘Rzﬂ )

(2.17) / RZJR” k

< / (2W2]klR]lRZk szRijkl R‘szl )
M
o [ VRPoE+ / et
M €2 JM
We complete the proof of Lemma 2.2. O

The following two lemmas come from [8] (for more details, see [2,6,7,12,13].
For a proof of Lemma 2.4, we refer to [9]):

Lemma 2.3. On every Riemannian manifold (M™,g), for any A € R, the
following estimate holds

’ - Wijklf%jl-éik + AR”ngRm
2(n — 2)\?
n

n

-9 . .
2.18 <= (W] Rij|*) " |Ri;|?
(2.18) < 5o (WF+ By[?) 1R
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_ n—2 ‘

A -
m RlC@g |R”| .

+ R
V2n

Lemma 2.4. On every Einstein manifold (M™, g), we have

(2.19) %A\WF > + %R|W\2 20, W,
where Cy, is defined by

8 ifn=4;
(2.20) C, = { W if n=5;

n—2 n?—n—4 . >
V/n(n-1) - 2y/(n—2)(n—1)n(n+1)’ ifn 2 6.

In particular, if the scalar curvature of Einstein metric g is positive, then it is
of constant positive sectional curvature, provided either

1
(2.21) Cn|W| < 2R,
n
or
(1) forn #5,
2
(2.22) (/ |W|%) < E,Qy(M),
M
where Ey, is given by
V6, if n = 4;
(223) E, = 4(77, 1) 2 2_ a4 —1 )
n— n“—mn > 6
(\/’ﬂ ’I’L 1) 2\/("’72)(”*1)71(7’7,4»1)) ) an = 67
(2) forn =35,
2 2\F 4
(2.24) (/ W12 ) 5 Qq(M).

3. Proof of theorems
3.1. Proof of Theorem 1.1

By combining the estimates (2.7) with (2.11), we derive
_ 2 .
™
>~ T / Wl Fud;
2 _ — o o o
e Tra] ey ol
2 _ _ o
: (12—(162)(;22)iﬁ E}:ﬂq) n i 1/ RIRi; |07
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For all € € (0,1), we have
(32) 0 —2(1—e)0+(1+e)=[0—(1—e)?>+(1+e)—(1—e€)” >0,
and hence (3.1) reduces to

[462(1 — 62) + 61]92 —+ 61 1 + 61 / )
€162[02 —2(1 — e2)0 + (1 + ¢4 |Rz]| V|
_[W—O—@w+(+q

T P-2(l-e)i+(1+a)

. 1 .
ik Rid] + —— / R|R;;|*¢;.
n 1 M

(3.3)

/ Wijkléjléik¢$
M

ij
M

Using (2.18), we have

(34) [02_ 2(1 : Zz)z i E ;] ijlelRﬂc + szR ksz
[ n—2 —(I—e)f+(1+e)]
n—l ‘ (1—62) (1+61)W
\/271(” )RIC @g’|RU\2

Applying (3.4) into (3.3) gives

dea(1 — 62 (1
[4ea( - €2) +e]0® +e(1+€) / B 2V 2
61629 —21—629+ 1+€1

n—2 ‘ 2002 — (1 — e 9+(1+61)]W
- M 2n—1)1 02 —2(1 —e2)0+ (1 + €1)

|Ri[*67.

(3.5)

Ric @g‘ + 7R

* oD

Now, we fixed €; and €2 and minimize the coefficient of W with respect to the
function 6 by taking

(3.6) 0= —v1+e,

then (3.5) becomes

(3.7)

[2e2(1 — €2) + €1] \/1+61 2
|Ru| V|
e1ea[v/1+ €1 + (1 — €2)]

B M[ \/ ni?l’ 1‘2 )W

|Rij 97
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Since W is perpendicular to Ric @Dy, for any given €1, é;, we have

1 n 5 2
(3.8) ‘ 1+ ———— W+ —"—Ric@yg
( 1+ \}72) V2n(n —2)
(1 ) W+ g i @
= P 5 oz ey
1+ ;% 2(n — 2)2
n o
4W|* + ———Ri 2
AW + 5 Ric @)
n 1:{0 2
= low+ —" Ric ’ ,
‘ V2n(n — 2) Bsg
which shows that
1 n .
‘(1 + ﬁ>W+ —— Ric Py
n o
<2W + =" Ric ®g].
\/Sn(n — 2) B9
Therefore, under the condition (1.3), the estimate (3.7) gives
n—2
[ \/ (n—1) ‘ % )W
61
(3.10) + 71%10 ’ + ——R||Ry;)?
[262(1 — &) + ¢] \/1—|—61 5
< IRw| IVor|®.
6162[\/1 +é + (1 - &)
Since
(3.11) / |Ri;|? < oo,
M
then we have
(3.12) / |Rij [PV |* — 0
M

as r — o0o. This, together with (3.10), shows that M™ is Einstein. In this case,
(1.3) becomes

R
W\ < )
(3.13) Wl < 2(n—1)(n —2)
which yields
Cy
(3.14) CnlW| <

R
2(n—1)(n —2)
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It is easy to check that for n = 4,5, we have

Ch 1
(3.15) T 1)(n_2)R< ~R,

which combining with (2.21) shows that M™ is of constant positive sectional
curvature.

3.2. Proof of Theorem 1.2
From (2.18), it is easy to see

2WzyklR]lek RUR ksz
(3.16) 2(n —2) Vo
< i Rii|%.
<y o= \W+¢g(n_2)mc®g Ry

Applying (3.16) into (2.11) and using the Kato inequality, we obtain
/ VIRy|[*¢7 / VR |6
M
< [2(n —2) vn R ‘
(3.17) _1—62 n—1 ’ V8(n —2) c®g

N 1 N
Ri»2§+7/ R’V >
|Rij|"¢ =) Ml i7"V

IN

1
S

Taking u = |RU\¢T in (1.5) and applying (3.17) yield
n—2

a1 Q0n( [ (Rylen=)
< /M <|V(\éz‘j|¢7~)\2 + ﬁm%l%ﬁ)

() [ VIRgIP6+ (14 2) [ 7RI

+n7__2/ R|Ry; |67

e el M e e L

n—2 14 €3
R|R
n—l[ 4 1—62:|/ | ”|¢

1 1
14eg)|— + ——— 21V [2.
+( +eg)[€3+62(1_62)]/M\RJ| V6|

IA

_|_
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Inserting the following Holder inequality

/ ’W+ )Rw@g’\Rm 2

: (/M\ng(f_mmc @9!?)5(/M<\éij|¢7«>%)%
into (3.18) yields

- PR [

om gt )| (forae=)”
= -2 [ RikgRe:

“n—1 1-— €9
tra)[s+ o] [ IRPITeP
€)|—+ ———— ¥ .
3 €3 62(1 — 62) M 4 "
Now, we consider the following two cases:
Case one: When n > 7, there exist €;, €3 depending only on the dimension
n such that

(3.20)

In this case, (3.19) becomes

Q () - "2 A2 /M\W

e o)’ ] (] rlon) "

<Oa)z+ ogg) [ IRaFITe P

Under the assumption that (1.6) and (1.

(3.21) n

we can derive from (3.21)

)
—2

7,
@y (M) - 4 n—l /’W
3.22 v e
(3.22) +\/§(n—2)R Oy

)] (] (gt ?) ™
1

§(1+€3)|:T+7 / |sz| |v¢)7|2—>0

€3 &(l—é

as r — oo, which shows that M™ is Einstein.
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Case two: When 4 <n <6 and R > 0, for all e, €3, we always have
n — 2 1 —+ €3
4 1— €2

Therefore, under the condition (1.8), there are €;,€; small enough such that

0< Qg(M)—1+E 2(n—2)(/M‘W

(3.23) <0.

].—EQ n—1
\/’71 o, % % o 2n_ v%z
+7Rlc®g‘ /(|Ri»\¢r)n72
(3.24) V8(n —2) ) ( o )
1 n—2 1-+¢€3 5 12 42
_n—l[ 4 1—62}/MR‘R”|¢T

+(1+¢ )[l+;
e T al—a)

| [ 1ve, o
M

as r — 0o. Hence, M" is Einstein. In this case, (1.8) becomes

(3.25) (/M \Wﬁ)% <

It is easy to check that for n = 4 we have ,/ 2(’;;12) < @, for n = 5 we have

/7 < 2424, This combining with Lemma 2.4 shows that M"(n = 4,5)

is of constant sectional curvature.
This completes the proof of Theorem 1.2.

n—1

ng(M)-
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