DOI QR코드

DOI QR Code

[ H2 ] Control of Uncertain Systems with Actuator Saturation

구동기포화를 갖는 불확실한 시스템의 H2 제어

  • Published : 2007.10.01

Abstract

This paper presents an LMI-based method to design a saturated state-feedback $H_2$ controller for uncertain systems with actuator saturation. Specifically, the paper proposes a sufficient condition such that the system under norm-bounded uncertainties and actuator saturation is asymptotically stable and the $H_2$-norm of the system has an upper-bound. The resulting condition is further utilized to solve a convex optimization problem specified in the context of $H_2$-norm minimization, whose solution yields a saturated $H_2$ controller. A numerical example is presented to show the effectiveness of the proposed method.

Keywords

References

  1. J. M. Gomes da Silva Jr., C. Paim, and E. B. Castelan, 'LMI-based framework for the synthesis of saturating control laws,' Revista Controle & Automacao, vol. 12, no. 3, pp. 171-177, 2001
  2. H. Hindi and S. Boyd, 'Analysis of linear systems with saturation using convex optimization,' Proc. IEEE Conf. Decision and Control (CDC), pp. 903-908, 1998
  3. J.-H. Kim and Z. Bien, 'Robust stability of uncertain linear systems with saturating actuators,' IEEE Trans. Automat. Contr., vol. 39, no. 1, pp. 202-207, 1994 https://doi.org/10.1109/9.273369
  4. T. Nguyen and F. Jabbari, 'Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation,' Automatica, vol. 36, pp. 1339-1346, 2000 https://doi.org/10.1016/S0005-1098(00)00051-0
  5. L. Yu, Q.-L. Han, and M-X. Sun, 'Optimal guaranteed cost control of linear uncertain systems with input constraints,' Int. J. Control, Automation, and Systems, vol. 3, no. 3, pp. 397-402, 2005
  6. T. Hu, Z. Lin, and B. M. Chen, 'An analysis and design method for linear systems subject to actuator saturation and disturbance,' Automatica, vol. 38, pp. 351-359, 2002 https://doi.org/10.1016/S0005-1098(01)00209-6
  7. T. Hu, Z. Lin, and B. M. Chen, 'Analysis and design for discrete-time linear systems subject to actuator saturation,' Syst. Contr. Lett., vol. 45, pp. 97-112, 2002 https://doi.org/10.1016/S0167-6911(01)00168-2
  8. Y. Y. Cao, Z. Lin, and Y. Shamash, 'Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation,' Syst. Contr. Lett., vol. 46, pp. 137-151, 2002 https://doi.org/10.1016/S0167-6911(02)00128-7
  9. H.-C. Choi, S. Jang, D. Chwa, and S.-K. Hong, 'Guaranteed cost control of uncertain systems subject to actuator saturation,' Proc. SICE-ICASE Int. Joint Conference, pp. 994-999, 2006
  10. A. A. Stoorvogel, 'The robust $H_2$ control problem: a worst-case design,' IEEE Trans. Automat. Contr., vol. 38, no. 9, 1993
  11. C. E. de Souza, A. Trofino, and J. de Oliveira, 'Parametric Lyapunov function approach to $H_2$ analysis and control of linear parameter-dependent systems,' IEE Proc.-Control Theory Appl., vol. 150, no. 5, pp. 501-508, 2003
  12. R. Yang, L. Lu, and L. Xie, 'Robust $H_2$ and $H_{\infty}$, control of discrete-time systems with polytopic uncertainties via dynamic output feedback,' Int. J. Control, vol. 78, no. 16, pp. 1285-1294, 2005 https://doi.org/10.1080/00207170500292489
  13. D. Banjerdpongchai and J. P. How, 'Parametric robust $H_2$ control design with generalized multipliers via LMI synthesis,' Int. J. Control, vol. 70, no. 3, pp. 481-503, 1998 https://doi.org/10.1080/002071798222343
  14. G. Feng and D. Sun, 'Generalized $H_2$ controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions,' IEEE Trans. Circuits and Systems-I: Fundamemtal Theory and Applications, vol. 49, no. 12, pp. 1843-1850, 2002 https://doi.org/10.1109/TCSI.2002.805718
  15. A. Saberi, P. Sannuti, and B. M Chen, $H_2$ Optimal Control, Prentice Hall International, London, 1995
  16. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994
  17. H. Fang, Z. Lin, and T. Hu, 'Analysis of linear systems in the presence of actuator saturation and L2-disturbances,' Automatica, vol. 40, pp. 1229-1238, 2004 https://doi.org/10.1016/j.automatica.2004.02.009
  18. P. Ghahinet, A. Nemirovskii, A. J. Laub, and M Chillali, MATLAB LMI Control Toolbox User's Guide, The Mathworks, Natick, 1995