• 제목/요약/키워드: nanoelectronics

검색결과 84건 처리시간 0.024초

다중벽 탄소 나노튜브를 이용한 유동 압력 검출 (Pressure sensing of air flow using multi-walled carbon nanotubes)

  • 송진원;이종홍;이응숙;한창수
    • 센서학회지
    • /
    • 제16권5호
    • /
    • pp.377-383
    • /
    • 2007
  • We describe the fabrication and characterization of a doubly clamped multi-walled carbon nanotube (MWNT). The device was assembled by an application of electric field in solution. The MWNT was clamped on end of metal trench electrodes in solution and deposited with additional platinum (Pt) on edge of electrode for firmly suspending the MWNT by focused ion beam (FIB). The MWNTs range of diameter and length were 100 to 150 nm and 1.5 to $2{\mu}m$, respectively. Electrical characteristics of fabricated devices were measured by I-V curve and impedance analysis. The mechanical deformation was observed by resistivity in high air pressure. Resonant frequency around 6.8 MHz was detected and resistivity was linearly varied according to the magnitude of air pressure. This device could have potential applications in nanoelectronics and various sensors.

Synthesis of diameter-controlled carbon nanotubes via structural modification of Al2O3 supporting layer

  • Kim, Soo-Youn;Song, Woo-Seok;Kim, Min-Kook;Jung, Woo-Sung;Choi, Won-Chel;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.286-286
    • /
    • 2010
  • The lack of homogeneously sized single-walled carbon nanotubes (SWNTs) hinders their many applications because properties of SWNTs, in particular electrical conduction, are highly dependent on the diameter and chirality. Therefore, the preferential growth of SWNTs with predetermined diameters is an ultimate objective for applications of SWNTs-based nanoelectronics. It has been previously emphasized that a catalyst size is the one crucial factor to determine the CNTs diameter in chemical vapor deposition (CVD) process, giving rise to several attempts to obtain size-controllable catalyst by diverse methods, such as solid supported catalyst, metal-containing molecular nanoclusters, and nanostructured catalytic layer. In this work, diameter-controlled CNTs were synthesized using a nanostructured catalytic layer consisting of Fe/Al2O3/Si substrate. The CNTs diameter was controlled by structural modification of Al2O3 supporting layer, because Al2O3 supporting layer can affect agglomeration phenomenon induced by heat-driven surface diffusion of Fe catalytic nanoparticles at growth temperature.

  • PDF

Graphene for MOS Devices

  • 조병진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.67.1-67.1
    • /
    • 2012
  • Graphene has attracted much attention for future nanoelectronics due to its superior electrical properties. Owing to its extremely high carrier mobility and controllable carrier density, graphene is a promising material for practical applications, particularly as a channel layer of high-speed FET. Furthermore, the planar form of graphene is compatible with the conventional top-down CMOS fabrication processes and large-scale synthesis by chemical vapor deposition (CVD) process is also feasible. Despite these promising characteristics of graphene, much work must still be done in order to successfully develop graphene FET. One of the key issues is the process technique for gate dielectric formation because the channel mobility of graphene FET is drastically affected by the gate dielectric interface quality. Formation of high quality gate dielectric on graphene is still a challenging. Dirac voltage, the charge neutral point of the device, also strongly depends on gate dielectrics. Another performance killer in graphene FET is source/drain contact resistance, as the contact resistant between metal and graphene S/D is usually one order of magnitude higher than that between metal and silicon S/D. In this presentation, the key issues on graphene-based FET, including organic-inorganic hybrid gate dielectric formation, controlling of Dirac voltage, reduction of source/drain contact resistance, device structure optimization, graphene gate electrode for improvement of gate dielectric reliability, and CVD graphene transfer process issues are addressed.

  • PDF

System Strategies for Time-Domain Emission Measurements above 1 GHz

  • Hoffmann, Christian;Slim, Hassan Hani;Russer, Peter
    • Journal of electromagnetic engineering and science
    • /
    • 제11권4호
    • /
    • pp.304-310
    • /
    • 2011
  • The application of time-domain methods in emission measurement instruments allows for a reduction in scan time by several orders of magnitude and for new evaluation methods to be realized such as the real-time spectrogram to characterize transient emissions. In this paper two novel systems for time-domain EMI measurements above 1 GHz are presented. The first system combines ultra-fast analog-to-digital-conversion and real-time digital signal processing on a field-programmable-gate-array (FPGA) with ultra-broadband multi-stage down-conversion to enable measurements in the range from 10 Hz to 26 GHz with high sensitivity and full-compliance with the requirements of CISPR 16-1-1. The required IF bandwidths were added to allow for measurements according to MIL-461F and DO-160F. The second system realizes a system of time-interleaved analog-to-digital converters (ADCs) and has an upper bandwidth limit of 4 GHz. With the implementation of an automatic mismatch calibration, the system fulfills CISPR 16-1-1 dynamic range requirements. Measurements of the radiated emissions of electronic consumer devices and household appliances like the non-stationary emissions of a microwave oven are presented. A measurement of a personal computer's conducted emissions on a power supply line according to DO-160F is given.

상온에서 고결정성 나노기공 이산화티탄 제조기술 (Synthesis of highly crystalline nanoporous titanium dioxide at room temperature)

  • 정평진;권용석
    • 에너지공학
    • /
    • 제25권2호
    • /
    • pp.65-78
    • /
    • 2016
  • 광촉매 연구의 초기는 태양에너지의 전환 및 저장에 관련된 분야들로부터 개발되어 왔다. 최근에는 광 또는 광촉매의 존재 하에서 자외선을 조사하여 물의 정제 및 폐수처리와 각종 유기화합물의 분해연구가 활발하게 진행되고 있다. 또한 산화물질-카본나노튜브, 그래핀 나노복합체 등이 광촉매물질로서 연구되고 있다. 이와 같은 복합체는 열적, 화학적으로 안정하기 때문에 플렉서블 소자를 포함한 광분해 태양전지 및 나노전자 소자를 구성하는 재료로서 적당하다.

Study on Magnetic Behavior of Zn1-xMnxO Films Grown on Si and α-Al2O3 Substrates by Sol-gel Method and Powders

  • Kim, Young-Mi;Park, Il-Woo
    • 한국자기공명학회논문지
    • /
    • 제12권1호
    • /
    • pp.26-32
    • /
    • 2008
  • We report on the ferromagnetic characteristics of $Zn_{1-x}Mn_xO$ films (x = 0.3) prepared by sol-gel method on the silicon and (0001) ${\alpha}-Al_2O_3$ substrates at the annealing temperature of 700$^{\circ}C$. Magnetic measurements show that Curie temperature ($T_C$) and the coercive field ($H_C$) for the film on the silicon are about 32 K and about 275 Oe, while those for that on the sapphire are about 32 K and 425 Oe, respectively. Energy dispersive spectroscopy and transmission electron microscopy measurements suggest that ferromagnetic precipitates originated by manganese oxide compound formed at the interfaces of the both substrates may be responsible for the observed ferromagnetic behavior of the films. Electron paramagnetic resonance study of the powders up to the concentration of x=0.15 supports the result.

전단코팅 공정으로 제조하는 금속-할라이드계 페로브스카이트의 박막성장에 미치는 공정변수의 영향 고찰 (The Influence of Process Variables on the Thin Film Growth of Metal-Halide Perovskites by the Solution Shear Coating)

  • 최지혜;송지호;정지영;정중희;김재균;홍기하
    • 한국표면공학회지
    • /
    • 제52권1호
    • /
    • pp.6-15
    • /
    • 2019
  • Metal-halide perovskite (MHP) solar cell is a promising candidate for next-generation flexible devices and the BIPV (Building-integrated photovoltaics) because it can exhibit high power conversion efficiencies over 23%, good bendability and low processing cost. However, MHP solar cells are commonly fabricated by the spin coating that is not a reliable method to produce large-scale commercial solar cells. A shear coating can be one of the potential candidates for the large-scale deposition method of MHP films. In this work, the influences of the process parameters such as solvents of precursor solution, substrate temperature, concentrations of precursor solution, and annealing time on the thin film growth of MHP were investigated for the shear coating process. This study presents the possibility of the shear coating process for large-scaled perovskite film fabrication and reveals the role of process condition in the thin film growth of perovskites.

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • 제10권4호
    • /
    • pp.339-347
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.471-479
    • /
    • 2021
  • In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment

  • Liani, Mohamed;Moulay, Noureddine;Bourada, Fouad;Addou, Farouk Yahia;Bourada, Mohamed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Advances in materials Research
    • /
    • 제11권1호
    • /
    • pp.1-22
    • /
    • 2022
  • In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect. Based on the nonlocal continuum theory, the governing equations of motion are formulated by considering thermal effect. The influences of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. Results indicate significant dependence of natural frequencies on the nonlocal parameter, the temperature change, the aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs.