1 |
Agrait, N., Yeyati, A.L. and van Ruitenbeek, J.M. (2003), "Quantum properties of atomic-sized conductors", Phys. Rep., 377, 81-279. https://doi.org/10.1016/S0370-1573(02)00633-6
DOI
|
2 |
Ahsan, S.A., Singh, S.K., Yadav, C., Marin, E.G., Kloes, A. and Schwarz, M. (2020), "A Comprehensive Physics-Based Current-Voltage SPICE Compact Model for 2-D-Material-Based Top-Contact Bottom-Gated Schottky-Barrier FETs", IEEE Transact. Electron Dev., 67, 5188-5195. https://doi.org/10.1109/TED.2020.3020900
DOI
|
3 |
Cuevas, J.C. and Scheer, E. (2017), Molecular Electronics (An Introduction to Theory and Experiment), (2nd Edition), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, USA.
|
4 |
Cumings, J. and Zettl, A. (2000), "Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes", Science, 289(5479), 602-604. https://doi.org/10.1126/science.289.5479.602
DOI
|
5 |
Dragoman, M. and Dragoman, D. (2017), 2D Nanoelectronics: Physics and Devices of Atomically Thin Materials, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-48437-2
|
6 |
Fuhrer, M.S., Nygard, J., Shih, L., Forero, M., Yoon, Y.G., Choi, H.J., Ihm, J., Louie, S.G., Zettl, A. and McEuen, P.L. (2000), "Crossed nanotube junctions", Science, 288, 494-497. https://doi.org/10.1126/science.288.5465.494
DOI
|
7 |
Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on I-V characteristics of CNTFETs", Adv. Nano Res., Int. J., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061
DOI
|
8 |
Maslov, M.M., Grishakov, K.S., Gimaldinova, M.A. and Katin, K.P. (2020), "Carbon vs silicon polyprismanes: a comparative study of metallic sp3-hybridized allotropes", Fuller. Nanotub. Carbon Nanostruct., 28(2), 97-103. https://doi.org/10.1080/1536383X.2019.1680974
DOI
|
9 |
Meng, J. and Li, Z. (2020), "Schottky-Contacted Nanowire Sensors", Adv. Mater., 2000130. https://doi.org/10.1002/adma.202000130
DOI
|
10 |
Wang, J., Zhou, X., Yang, M., Cao, D., Chen, X. and Shua, H. (2020), "Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions", J. Mater. Chem. C, 8, 7350-7357. https://doi.org/10.1039/d0tc01405b
DOI
|
11 |
Murali, R. (Ed.) (2012), Graphene Nanoelectronics: From Materials to Circuits, Springer, NY, USA. https://doi.org/10.1007/978-1-4614-0548-1
|
12 |
Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
DOI
|
13 |
Liu, J., Ren, J.-C., Shen, T., Liu, X., Butch, C.J., Li, S. and Liu, W. (2020), "Asymmetric Schottky Contacts in van der Waals Metal-Semiconductor-Metal Structures Based on TwoDimensional Janus Materials", Research, 2020, 6727524. https://doi.org/10.34133/2020/6727524
DOI
|
14 |
Kiguchi, M. (Ed.) (2016), Single-Molecule Electronics: An Introduction to Synthesis, Measurement and Theory, Springer Science + Business Media, Singapore. https://doi.org/10.1007/978-981-10-0724-8
|
15 |
Nedrygailov, I.I., Heo, Y., Kim, H. and Park, J.Y. (2019), "Charge Transfer during the Aluminum-Water Reaction Studied with Schottky Nanodiode Sensors", ACS Omega, 4, 20838-20843. https://doi.org/10.1021/acsomega.9b03397
DOI
|
16 |
Park, Y.J. and Somorjai, G.A. (2020), "Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions", MRS Bulletin, 45, 26-31. https://doi.org/10.1557/mrs.2019.295
DOI
|
17 |
Ferre, N., Filatov, M. and Huix-Rotllant, M. (eds.) (2016), Density-Functional Methods for Excited States, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-22081-9
|
18 |
Grabert, H. and Devoret, M.H. (Eds.) (1992), Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures, Springer Science + Business Media, NY, USA. https://doi.org/10.1007/978-1-4757-2166-9
|
19 |
Katin, K.P., Grishakov, K.S., Gimaldinova, M.A. and Maslov, M.M. (2020), "Silicon rebirth: Ab initio prediction of metallic sp3-hybridized silicon allotropes", Computat. Mater. Sci., 174, 109480. https://doi.org/10.1016/j.commatsci.2019.109480
DOI
|
20 |
Kim, H., Kim, Y.J., Jung, Y.S. and Park, J.Y. (2020), "Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide", Nanoscale Adv., 2, 4410-4416. https://doi.org/10.1039/d0na00602e
DOI
|
21 |
Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135
DOI
|
22 |
Lan, Y., Xia L.-X., Huang, T., Xu, W., Huang, G.-F., Hu, W. and Huang, W.-Q. (2020), "Strain and Electric Field Controllable Schottky Barriers and Contact Types in Graphene-MoTe2 van der Waals Heterostructure", Nanoscale Res. Lett., 15, 180. https://doi.org/10.1186/s11671-020-03409-7
DOI
|
23 |
Paul, W., Oliver, D. and Grutter, P. (2014), "Indentation-formed nanocontacts: an atomic-scale perspective", Phys. Chem. Chem. Phys., 16(18), 8201-8222. https://doi.org/10.1039/C3CP54869D
DOI
|
24 |
Lee, Y.K., Choi, H., Lee, H., Lee, C., Choi, J.S., Choi, C.-G., Hwang, E. and Park, J.Y. (2016), "Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes", Scientific Reports, 6, 27549. https://doi.org/10.1038/srep27549
DOI
|
25 |
Lee, H., Yoon, S., Jo, J., Jeon, B., Hyeon, T., An, K. and Park, J.Y. (2019), "Enhanced hot electron generation by inverse metal-oxide interfaces on catalytic nanodiode", Faraday Discuss., 214, 353-364. https://doi.org/10.1039/C8FD00136G
DOI
|
26 |
Li, R., Zhang, J., Hou, S., Qian, Z., Shen, Z., Zhao, X. and Xue, Z. (2007), "A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration", Chem. Phys., 336, 127-135. https://doi.org/10.1016/j.chemphys.2007.06.011
DOI
|
27 |
Pinto, N.J. and Gonzalez, R. (2006), "Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode", Appl. Phys. Lett., 89, 033505. https://doi.org/10.1063/1.2227758
DOI
|
28 |
Landauer, R. (1970), "Electrical resistance of disordered one-dimensional lattices", Philosoph. Mag., 21(172), 863-867. http://dx.doi.org/10.1080/14786437008238472
DOI
|
29 |
Sergeyev, D. (2020c), "Specific Features of Electron Transport in a Molecular Nanodevice Containing a Nitroamine Redox Center", Tech. Phys., 65(4), 573-577. https://doi.org/10.1134/S1063784220040180
DOI
|
30 |
Sergeyev, D. and Zhanturina, N. (2019), "Simulation of Electrical Characteristics of Switching Nanostructures "Pt - TiO - Pt" and "Pt - NiO - Pt" with Memory", Radioengeeniring, 28(4), 714-720. https://doi.org/10.13164/re.2019.0714
DOI
|
31 |
Sergeyev, D. and Shunkeyev, K. (2018), "Investigation of transport parameters of graphene-based nanostructures", Russ. Phys. J., 60, 1938-1945. https://doi.org/10.1007/s11182-018-1306-9
DOI
|
32 |
Smidstrup, S., Stradi, D., Wellendorff, J., Khomyakov, P.A., Vej-Hansen, U.G., Lee, M-E., Ghosh, T., Jonsson, E., Jonsson, H. and Stokbro, K. (2017), "First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach", Phys. Rev. B, 96, 195309. https://doi.org/10.1103/PhysRevB.96.195309
DOI
|
33 |
Xiang, R., Inoue, T., Zheng, Y., Kumamoto, A., Qian, Y., Sato, Y., Liu, M., Tang, D., Gokhale, D., Guo, J. and Hisama, K. (2020), "One-dimensional van der Waals heterostructures", Science, 367(6477), 537-542. https://doi.org/10.1126/science.aaz2570
DOI
|
34 |
Pomorski, P., Roland, C., Guo, H. and Wang, J. (2003), "First-principles investigation of carbon nanotube capacitance", Phys. Rev. B, 67, 161404(R). https://doi.org/10.1103/PhysRevB.67.161404
DOI
|
35 |
Pomorski, P., Pastewka, L., Roland, C., Guo, H. and Wang, J. (2004), "Capacitance, induced charges, and bound states of biased carbon nanotube systems", Phys. Rev. B, 69, 115418. https://doi.org/10.1103/PhysRevB.69.115418
DOI
|
36 |
Schonenberger, C., van Houten, H. and Beenakker, C.W.J. (1993), "Polarization charge relaxation and the Coulomb staircase in ultrasmall double-barrier tunnel junctions", Physica B: Condensed Matter, 189(1-4), 218-224. https://doi.org/10.1016/0921-4526(93)90163-Z
DOI
|
37 |
Stokbro, K. (2008), "First-principles modeling of electron transport" J. Phys.: Condens. Matter., 20, 064216. https://doi.org/10.1088/0953-8984/20/6/064216
DOI
|
38 |
Wu, C.-P., Chen, Y.-H., Hong, Z.-L. and Lin, C.-H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163
DOI
|
39 |
Yan, Q., Zhou, G., Hao, S., Wu, J. and Duan, W. (2006), "Mechanism of nanoelectronic switch based on telescoping carbon nanotubes", Appl. Phys. Lett., 88, 173107. http://dx.doi.org/10.1063/1.2198481.
DOI
|
40 |
Sergeyev, D. (2020b), "Features of the electrical characteristics of an octagraphene nanotube", J. Nano-Electron. Phys., 11(6), 06022. https://doi.org/10.21272/jnep.11(6).06022
DOI
|
41 |
Sergeyev, D. (2020a), "Single Electron Transistor Based on Endohedral Metallofullerenes Me@C60 (Me = Li, Na, K)", J. Nano- Electron. Phys., 12(3), 03017. https://doi.org/10.21272/jnep.12(3).03017
DOI
|
42 |
Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A., Vej-Hansen, U.G. and Lee, M.E. (2020), "QuantumATK: an integrated platform of electronic and atomic-scale modelling tools", J. Phys.: Condens. Matter., 32, 015901. https://doi.org/10.1088/1361-648X/ab4007
DOI
|