Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.4.339

One-dimensional Schottky nanodiode based on telescoping polyprismanes  

Sergeyev, Daulet (Department of Physics, K. Zhubanov Aktobe Regional State University)
Publication Information
Advances in nano research / v.10, no.4, 2021 , pp. 339-347 More about this Journal
Abstract
In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.
Keywords
polyprisman; Schottky nanodiode; electron transport; current-voltage characteristic; differential conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agrait, N., Yeyati, A.L. and van Ruitenbeek, J.M. (2003), "Quantum properties of atomic-sized conductors", Phys. Rep., 377, 81-279. https://doi.org/10.1016/S0370-1573(02)00633-6   DOI
2 Ahsan, S.A., Singh, S.K., Yadav, C., Marin, E.G., Kloes, A. and Schwarz, M. (2020), "A Comprehensive Physics-Based Current-Voltage SPICE Compact Model for 2-D-Material-Based Top-Contact Bottom-Gated Schottky-Barrier FETs", IEEE Transact. Electron Dev., 67, 5188-5195. https://doi.org/10.1109/TED.2020.3020900   DOI
3 Cuevas, J.C. and Scheer, E. (2017), Molecular Electronics (An Introduction to Theory and Experiment), (2nd Edition), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, USA.
4 Cumings, J. and Zettl, A. (2000), "Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes", Science, 289(5479), 602-604. https://doi.org/10.1126/science.289.5479.602   DOI
5 Maslov, M.M., Grishakov, K.S., Gimaldinova, M.A. and Katin, K.P. (2020), "Carbon vs silicon polyprismanes: a comparative study of metallic sp3-hybridized allotropes", Fuller. Nanotub. Carbon Nanostruct., 28(2), 97-103. https://doi.org/10.1080/1536383X.2019.1680974   DOI
6 Murali, R. (Ed.) (2012), Graphene Nanoelectronics: From Materials to Circuits, Springer, NY, USA. https://doi.org/10.1007/978-1-4614-0548-1
7 Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865   DOI
8 Dragoman, M. and Dragoman, D. (2017), 2D Nanoelectronics: Physics and Devices of Atomically Thin Materials, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-48437-2
9 Fuhrer, M.S., Nygard, J., Shih, L., Forero, M., Yoon, Y.G., Choi, H.J., Ihm, J., Louie, S.G., Zettl, A. and McEuen, P.L. (2000), "Crossed nanotube junctions", Science, 288, 494-497. https://doi.org/10.1126/science.288.5465.494   DOI
10 Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on I-V characteristics of CNTFETs", Adv. Nano Res., Int. J., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061   DOI
11 Meng, J. and Li, Z. (2020), "Schottky-Contacted Nanowire Sensors", Adv. Mater., 2000130. https://doi.org/10.1002/adma.202000130   DOI
12 Kim, H., Kim, Y.J., Jung, Y.S. and Park, J.Y. (2020), "Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide", Nanoscale Adv., 2, 4410-4416. https://doi.org/10.1039/d0na00602e   DOI
13 Wang, J., Zhou, X., Yang, M., Cao, D., Chen, X. and Shua, H. (2020), "Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions", J. Mater. Chem. C, 8, 7350-7357. https://doi.org/10.1039/d0tc01405b   DOI
14 Liu, J., Ren, J.-C., Shen, T., Liu, X., Butch, C.J., Li, S. and Liu, W. (2020), "Asymmetric Schottky Contacts in van der Waals Metal-Semiconductor-Metal Structures Based on TwoDimensional Janus Materials", Research, 2020, 6727524. https://doi.org/10.34133/2020/6727524   DOI
15 Nedrygailov, I.I., Heo, Y., Kim, H. and Park, J.Y. (2019), "Charge Transfer during the Aluminum-Water Reaction Studied with Schottky Nanodiode Sensors", ACS Omega, 4, 20838-20843. https://doi.org/10.1021/acsomega.9b03397   DOI
16 Park, Y.J. and Somorjai, G.A. (2020), "Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions", MRS Bulletin, 45, 26-31. https://doi.org/10.1557/mrs.2019.295   DOI
17 Ferre, N., Filatov, M. and Huix-Rotllant, M. (eds.) (2016), Density-Functional Methods for Excited States, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-22081-9
18 Grabert, H. and Devoret, M.H. (Eds.) (1992), Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures, Springer Science + Business Media, NY, USA. https://doi.org/10.1007/978-1-4757-2166-9
19 Katin, K.P., Grishakov, K.S., Gimaldinova, M.A. and Maslov, M.M. (2020), "Silicon rebirth: Ab initio prediction of metallic sp3-hybridized silicon allotropes", Computat. Mater. Sci., 174, 109480. https://doi.org/10.1016/j.commatsci.2019.109480   DOI
20 Kiguchi, M. (Ed.) (2016), Single-Molecule Electronics: An Introduction to Synthesis, Measurement and Theory, Springer Science + Business Media, Singapore. https://doi.org/10.1007/978-981-10-0724-8
21 Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135   DOI
22 Lan, Y., Xia L.-X., Huang, T., Xu, W., Huang, G.-F., Hu, W. and Huang, W.-Q. (2020), "Strain and Electric Field Controllable Schottky Barriers and Contact Types in Graphene-MoTe2 van der Waals Heterostructure", Nanoscale Res. Lett., 15, 180. https://doi.org/10.1186/s11671-020-03409-7   DOI
23 Paul, W., Oliver, D. and Grutter, P. (2014), "Indentation-formed nanocontacts: an atomic-scale perspective", Phys. Chem. Chem. Phys., 16(18), 8201-8222. https://doi.org/10.1039/C3CP54869D   DOI
24 Lee, Y.K., Choi, H., Lee, H., Lee, C., Choi, J.S., Choi, C.-G., Hwang, E. and Park, J.Y. (2016), "Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes", Scientific Reports, 6, 27549. https://doi.org/10.1038/srep27549   DOI
25 Lee, H., Yoon, S., Jo, J., Jeon, B., Hyeon, T., An, K. and Park, J.Y. (2019), "Enhanced hot electron generation by inverse metal-oxide interfaces on catalytic nanodiode", Faraday Discuss., 214, 353-364. https://doi.org/10.1039/C8FD00136G   DOI
26 Li, R., Zhang, J., Hou, S., Qian, Z., Shen, Z., Zhao, X. and Xue, Z. (2007), "A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration", Chem. Phys., 336, 127-135. https://doi.org/10.1016/j.chemphys.2007.06.011   DOI
27 Sergeyev, D. (2020c), "Specific Features of Electron Transport in a Molecular Nanodevice Containing a Nitroamine Redox Center", Tech. Phys., 65(4), 573-577. https://doi.org/10.1134/S1063784220040180   DOI
28 Pinto, N.J. and Gonzalez, R. (2006), "Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode", Appl. Phys. Lett., 89, 033505. https://doi.org/10.1063/1.2227758   DOI
29 Landauer, R. (1970), "Electrical resistance of disordered one-dimensional lattices", Philosoph. Mag., 21(172), 863-867. http://dx.doi.org/10.1080/14786437008238472   DOI
30 Sergeyev, D. and Zhanturina, N. (2019), "Simulation of Electrical Characteristics of Switching Nanostructures "Pt - TiO - Pt" and "Pt - NiO - Pt" with Memory", Radioengeeniring, 28(4), 714-720. https://doi.org/10.13164/re.2019.0714   DOI
31 Sergeyev, D. and Shunkeyev, K. (2018), "Investigation of transport parameters of graphene-based nanostructures", Russ. Phys. J., 60, 1938-1945. https://doi.org/10.1007/s11182-018-1306-9   DOI
32 Smidstrup, S., Stradi, D., Wellendorff, J., Khomyakov, P.A., Vej-Hansen, U.G., Lee, M-E., Ghosh, T., Jonsson, E., Jonsson, H. and Stokbro, K. (2017), "First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach", Phys. Rev. B, 96, 195309. https://doi.org/10.1103/PhysRevB.96.195309   DOI
33 Xiang, R., Inoue, T., Zheng, Y., Kumamoto, A., Qian, Y., Sato, Y., Liu, M., Tang, D., Gokhale, D., Guo, J. and Hisama, K. (2020), "One-dimensional van der Waals heterostructures", Science, 367(6477), 537-542. https://doi.org/10.1126/science.aaz2570   DOI
34 Pomorski, P., Roland, C., Guo, H. and Wang, J. (2003), "First-principles investigation of carbon nanotube capacitance", Phys. Rev. B, 67, 161404(R). https://doi.org/10.1103/PhysRevB.67.161404   DOI
35 Pomorski, P., Pastewka, L., Roland, C., Guo, H. and Wang, J. (2004), "Capacitance, induced charges, and bound states of biased carbon nanotube systems", Phys. Rev. B, 69, 115418. https://doi.org/10.1103/PhysRevB.69.115418   DOI
36 Schonenberger, C., van Houten, H. and Beenakker, C.W.J. (1993), "Polarization charge relaxation and the Coulomb staircase in ultrasmall double-barrier tunnel junctions", Physica B: Condensed Matter, 189(1-4), 218-224. https://doi.org/10.1016/0921-4526(93)90163-Z   DOI
37 Stokbro, K. (2008), "First-principles modeling of electron transport" J. Phys.: Condens. Matter., 20, 064216. https://doi.org/10.1088/0953-8984/20/6/064216   DOI
38 Wu, C.-P., Chen, Y.-H., Hong, Z.-L. and Lin, C.-H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163   DOI
39 Yan, Q., Zhou, G., Hao, S., Wu, J. and Duan, W. (2006), "Mechanism of nanoelectronic switch based on telescoping carbon nanotubes", Appl. Phys. Lett., 88, 173107. http://dx.doi.org/10.1063/1.2198481.   DOI
40 Sergeyev, D. (2020b), "Features of the electrical characteristics of an octagraphene nanotube", J. Nano-Electron. Phys., 11(6), 06022. https://doi.org/10.21272/jnep.11(6).06022   DOI
41 Sergeyev, D. (2020a), "Single Electron Transistor Based on Endohedral Metallofullerenes Me@C60 (Me = Li, Na, K)", J. Nano- Electron. Phys., 12(3), 03017. https://doi.org/10.21272/jnep.12(3).03017   DOI
42 Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A., Vej-Hansen, U.G. and Lee, M.E. (2020), "QuantumATK: an integrated platform of electronic and atomic-scale modelling tools", J. Phys.: Condens. Matter., 32, 015901. https://doi.org/10.1088/1361-648X/ab4007   DOI