DOI QR코드

DOI QR Code

One-dimensional Schottky nanodiode based on telescoping polyprismanes

  • Sergeyev, Daulet (Department of Physics, K. Zhubanov Aktobe Regional State University)
  • Received : 2020.07.18
  • Accepted : 2021.01.19
  • Published : 2021.05.25

Abstract

In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.

Keywords

Acknowledgement

This research has is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No AP08052562).

References

  1. Agrait, N., Yeyati, A.L. and van Ruitenbeek, J.M. (2003), "Quantum properties of atomic-sized conductors", Phys. Rep., 377, 81-279. https://doi.org/10.1016/S0370-1573(02)00633-6.
  2. Ahsan, S.A., Singh, S.K., Yadav, C., Marin, E.G., Kloes, A. and Schwarz, M. (2020), "A comprehensive physics-based current-voltage SPICE compact model for 2-D-material-mased topcontact bottom-gated Schottky-Barrier FETs", IEEE T. Electron Dev., 67(11), 5188-5195. https://doi.org/10.1109/TED.2020.3020900.
  3. Cuevas, J.C. and Scheer, E. (2017), Molecular Electronics (An Introduction to Theory and Experiment), (2nd Edition), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, U.S.A.
  4. Cumings, J. and Zettl, A. (2000), "Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes", Science, 289 (5479), 602-604. https://doi.org/10.1126/science.289.5479.602.
  5. Dragoman, M. and Dragoman, D. (2017), 2D Nanoelectronics: Physics and Devices of Atomically Thin Materials, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-48437-2.
  6. Ferre, N., Filatov, M. and Huix-Rotllant, M. (eds.) (2016), Density-Functional Methods for Excited States, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-22081-9.
  7. Fuhrer, M., Nygard, J., Shih, L., Foreo, M., Yoon, Y.-G., Mazzoni, M.S.C., Choi, H.J., Ihm, J.S., Louie, S.G., Zettl, A. and McEuen, P.L. (2000), "Crossed nanotube junctions", Science, 288(5465), 494-497. https://doi.org/10.1126/science.288.5465.494.
  8. Grabert, H. and Devoret, M.H. (Eds.) (1992), Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures, Springer Science+Business Media, NY, U.S.A. https://doi.org/10.1007/978-1-4757-2166-9.
  9. Katin, K.P., Grishakov, K.S., Gimaldinova, M.A. and Maslov, M.M. (2020), "Silicon rebirth: Ab initio prediction of metallic sp3-hybridized silicon allotropes", Computat. Mater. Sci., 174, 109480. https://doi.org/10.1016/j.commatsci.2019.109480.
  10. Kiguchi, M. (Ed.) (2016), Single-Molecule Electronics: An Introduction to Synthesis, Measurement and Theory, Springer Science+Business Media, Singapore. https://doi.org/10.1007/978-981-10-0724-8.
  11. Kim, H., Kim, Y.J., Jung, Y.S. and Park, J.Y. (2020), "Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide", Nanosc. Adv., 2(10), 4410-4416. https://doi.org/10.1039/d0na00602e.
  12. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.
  13. Lan, Y., Xia L.-X., Huang, T., Xu, W., Huang, G.-F., Hu, W. and Huang, W.-Q. (2020), "Strain and electric field controllable Schottky Barriers and contact types in Graphene-MoTe2 van der Waals Heterostructure", Nanosc. Res. Lett., 15(1), 180. https://doi.org/10.1186/s11671-020-03409-7.
  14. Landauer, R. (1970), "Electrical resistance of disordered one-dimensional lattices", Philos. Mag., 21(172), 863-867. http://doi.org/10.1080/14786437008238472.
  15. Lee, Y.K., Choi, H., Lee, H., Lee, C., Choi, J.S., Choi, C.-G., Hwang, E. and Park, J.Y. (2016), "Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes", Scientific Reports, 6(1), 27549. https://doi.org/10.1038/srep27549.
  16. Lee, H., Yoon, S., Jo, J., Jeon, B., Hyeon, T., An, K. and Park, J.Y. (2019), "Enhanced hot electron generation by inverse metal-oxide interfaces on catalytic nanodiode", Faraday Discuss., 214, 353-364. https://doi.org/10.1039/C8FD00136G.
  17. Li, R., Zhang, J., Hou, S., Qian, Z., Shen, Z., Zhao, X. and Xue, Z. (2007), "A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration", Chem. Phys., 336(2-3), 127-135. https://doi.org/10.1016/j.chemphys.2007.06.011.
  18. Liu, J., Ren, J.-C., Shen, T., Liu, X., Butch, C.J., Li, S. and Liu, W. (2020), "Asymmetric Schottky contacts in van der Waals metal-semiconductor-metal structures based on two-dimensional Janus materials", Research, 2020, 6727524. https://doi.org/10.34133/2020/6727524.
  19. Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on I-V characteristics of CNTFETs", Adv. Nano Res., Int. J., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061.
  20. Maslov, M.M., Grishakov, K.S., Gimaldinova, M.A. and Katin, K.P. (2020), "Carbon vs silicon polyprismanes: a comparative study of metallic sp3-hybridized allotropes", Fuller. Nanotub. Car. N., 28(2), 97-103. https://doi.org/10.1080/1536383X.2019.1680974.
  21. Meng, J. and Li, Z. (2020), "Schottky-contacted nanowire sensors", Adv. Mater., 32(28), 2000130. https://doi.org/10.1002/adma.202000130.
  22. Murali, R. (Ed.) (2012), Graphene Nanoelectronics: From Materials to Circuits, Springer, NY, U.S.A. https://doi.org/10.1007/978-1-4614-0548-1.
  23. Nedrygailov, I.I., Heo, Y., Kim, H. and Park, J.Y. (2019), "Charge transfer during the Aluminum-Water reaction studied with Schottky nanodiode sensors", ACS Omega, 4(24), 20838-20843. https://doi.org/10.1021/acsomega.9b03397.
  24. Park, Y.J. and Somorjai, G.A. (2020), "Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions", MRS Bull., 45(1), 26-31. https://doi.org/10.1557/mrs.2019.295.
  25. Paul, W., Oliver, D. and Grutter, P. (2014), "Indentation-formed nanocontacts: an atomic-scale perspective", Phys. Chem. Chem. Phys., 16(18), 8201-8222. https://doi.org/10.1039/C3CP54869D.
  26. Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77(18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.
  27. Pinto, N.J. and Gonzalez, R. (2006), "Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode", Appl. Phys. Lett., 89(3), 033505. https://doi.org/10.1063/1.2227758.
  28. Pomorski, P., Roland, C., Guo, H. and Wang, J. (2003), "First-principles investigation of carbon nanotube capacitance", Phys. Rev. B, 67(16), 161404(R). https://doi.org/10.1103/PhysRevB.67.161404.
  29. Pomorski, P., Pastewka, L., Roland, C., Guo, H. and Wang, J. (2004), "Capacitance, induced charges, and bound states of biased carbon nanotube systems", Phys. Rev. B, 69(11), 115418. https://doi.org/10.1103/PhysRevB.69.115418.
  30. Schonenberger, C., van Houten, H. and Beenakker, C.W.J. (1993), "Polarization charge relaxation and the Coulomb staircase in ultrasmall double-barrier tunnel junctions", Physica B, 189(1-4), 218-224. https://doi.org/10.1016/0921-4526(93)90163-Z.
  31. Sergeyev, D. and Zhanturina, N. (2019), "Simulation of electrical characteristics of switching nanostructures "Pt - TiO - Pt" and "Pt - NiO - Pt" with memory", Radioengeeniring, 28(4), 714-720. https://doi.org/10.13164/re.2019.0714.
  32. Sergeyev, D. (2020a), "Single electron transistor based on endohedral metallofullerenes Me@C60 (Me = Li, Na, K)", J. Nano-Electron. Phys., 12(3), 03017. https://doi.org/10.21272/jnep.12(3).03017.
  33. Sergeyev, D. (2020b), "Features of the electrical characteristics of an octagraphene nanotube", J. Nano-Electron. Phys., 11(6), 06022. https://doi.org/10.21272/jnep.11(6).06022.
  34. Sergeyev, D. (2020c), "Specific features of electron transport in a molecular nanodevice containing a nitroamine redox center", Tech. Phys., 65(4), 573-577. https://doi.org/10.1134/S1063784220040180.
  35. Sergeyev, D. and Shunkeyev, K. (2018), "Investigation of transport parameters of graphene-based nanostructures", Russ. Phys. J., 60(11), 1938-1945. https://doi.org/10.1007/s11182-018-1306-9.
  36. Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A. and Vej-Hansen, U.G. (2020), "QuantumATK: An integrated platform of electronic and atomic-scale modelling tools", J. Phys.: Condens. Matter., 32(1), 015901. https://doi.org/10.1088/1361-648X/ab4007.
  37. Smidstrup, S., Stradi, D., Wellendorff, J., Khomyakov, P.A., Vej-Hansen, U.G., Lee, M-E., Ghosh, T., Jonsson, E., Jonsson, H. and Stokbro, K. (2017), "First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach", Phys. Rev. B, 96(19), 195309. https://doi.org/10.1103/PhysRevB.96.195309.
  38. Stokbro, K. (2008), "First-principles modeling of electron transport" J. Phys.: Condens. Matter., 20(6), 064216. https://doi.org/10.1088/0953-8984/20/6/064216.
  39. Wang, J., Zhou, X., Yang, M., Cao, D., Chen, X. and Shua, H. (2020), "Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions", J. Mater. Chem. C, 8(22), 7350-7357. https://doi.org/10.1039/d0tc01405b.
  40. Wu, C.-P., Chen, Y.-H., Hong, Z.-L. and Lin, C.-H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.
  41. Xiang, R., Inoue, T., Zheng Y., Kumamoto, A., Qian, Y., Sato, Y. Liu, M., Tang, D., Gokhale, D., Guo, J., Hisama, K., Yotsumoto, S., Ogamoto, T., Arai, H., Kobayashi, Y., Zhang, H., Hou, B., Anisimov, A., Maruyama, M., Miyata, Y., Okada, S., Chiashi, S., Li, Y., Kong, J., Kauppinen, E.I., Ikuhara, Y., Suenaga, K. and Maruyama, S. (2020), "One-dimensional van der Waals heterostructures", Science, 367(6477), 537-542. https://doi.org/10.1126/science.aaz2570.
  42. Yan, Q., Zhou, G., Hao, S., Wu, J. and Duan, W. (2006), "Mechanism of nanoelectronic switch based on telescoping carbon nanotubes", Appl. Phys. Lett., 88(17), 173107. http://doi.org/10.1063/1.2198481.