DOI QR코드

DOI QR Code

A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment

  • Liani, Mohamed (Departement de physique, Faculte des Sciences Exactes, Universite Djilali Liabes de Sidi Bel Abbes) ;
  • Moulay, Noureddine (Departement de physique, Faculte des Sciences Exactes, Universite Djilali Liabes de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Addou, Farouk Yahia (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bourada, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
  • Received : 2021.02.03
  • Accepted : 2021.08.15
  • Published : 2022.03.25

Abstract

In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect. Based on the nonlocal continuum theory, the governing equations of motion are formulated by considering thermal effect. The influences of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. Results indicate significant dependence of natural frequencies on the nonlocal parameter, the temperature change, the aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs.

Keywords

References

  1. Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., Int. J., 2(2), 125-140. http://doi.org/10.12989/cme.2020.2.2.125
  2. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., Int. J., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147
  3. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
  4. Ahmed, R.A., Moustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020a), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., Int. J., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413
  5. Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020b), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., Int. J., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033
  6. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., Int. J., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147
  7. Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Computat. Des., Int. J., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177
  8. Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., Int. J., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.615
  9. Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells", Adv. Nano Res., Int. J., 9(1), 33-45. https://doi.org/10.12989/anr.2020.9.1.033
  10. Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005
  11. Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput. https://doi.org/10.1007/s00366-020-01080-1
  12. Attia, M.A., Shanab, R.A., Mohamed, S.A. and Mohamed, N.A. (2019), "Surface energy effects on the nonlinear free vibration of functionally graded Timoshenko nanobeams based on modified couple stress theory", Int. J. Struct. Stabil. Dyn., 19(11), 1950127. https://doi.org/10.1142/s021945541950127x
  13. Bahaadini, R., Hosseini, M. and Amiri, M. (2020), "Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field", Eng. Comput., 37(4), 2877-2889. https://doi.org/10.1007/s00366-020-00980-6
  14. Bao, W.X., Zhu, C.C. and Cui, W.Z. (2004), "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics", Physica B: Condensed Matter, 352(1-4), 156-163. https://doi.org/10.1016/j.physb.2004.07.005
  15. Barati, M.R. and Shahverdi, H. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Braz. Soc. Mech. Sci. Eng., 42, 33. https://doi.org/10.1007/s40430-019-2118-8
  16. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircr. Spacecr. Sci., Int. J., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001
  17. Benferhat, R., Daouadji, T.H. and Rabahi, A. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., Int. J., 9(4), 265-287. https://doi.org/10.12989/amr.2020.9.4.265
  18. Benferhat, R., Daouadji, T.H. and Rabahi, A. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. https://doi.org/10.12989/cme.2021.3.1.041
  19. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339
  20. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019a), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., Int. J., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021
  21. Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019b), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., Int. J., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269
  22. Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical Buckling Load of Triple-Walled Carbon Nanotube Based on Nonlocal Elasticity Theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/jnanor.62.108
  23. Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated nonrectangular plates by discrete singular convolution method", Eng. Comput. https://doi.org/10.1007/s00366-020-01168-8
  24. Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotubereinforced composite microbeams", Mathe. Methods Appl. Sci. https://doi.org/10.1002/mma.7069
  25. Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R.E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature, 384(6605), 147-150. https://doi.org/10.1038/384147a0
  26. Dehghan, M., Ebrahimi, F. and Vinyas, M. (2019), "Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes", Eng. Comput., 36, 1687-1703. https://doi.org/10.1007/s00366-019-00790-5
  27. Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., Int. J., 34(5), 657-670. https://doi.org/10.12989/SCS.2020.34.5.657
  28. Dharap, P., Li, Z., Nagarajaiah, S. and Barrera, E.V. (2004), "Nanotube film based on single-wall carbon nanotubes for strain sensing", Nanotechnology, 15(3), 379-382. https://doi.org/10.1088/0957-4484/15/3/026
  29. Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, USA.
  30. Dresselhaus, M.S., Lin, Y.M., Rabin, O., Jorio, A., Souza Filho, A.G., Pimenta, M.A., Saito, R., Samsonidze, G. and Dresselhaus, G. (2003), "Nanowires and nanotubes", Mater. Sci. Eng.: C, 23(1-2), 129-140. https://doi.org/10.1016/s0928-4931(02)00240-0
  31. Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518
  32. Ebrahimi, F. and Barati, M.R. (2019), "A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets", Iran J. Sci. Technol. Trans. Mech. Eng., 43, 205-220. https://doi.org/10.1007/s40997-017-0131-z
  33. Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Computat. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136
  34. Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019a), "Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/jnanor.57.136
  35. Eltaher, M.A., Almalki, T.A., Almitani, K.H., Ahmed, K.I.E. and Abdraboh, A.M. (2019b), "Modal participation of fixed-fixed single-walled carbon nanotube with vacancies", Int. J. Adv. Struct. Eng., 11(2), 151-163. https://doi.org/10.1007/s40091-019-0222-8
  36. Eltaher, M.A., Almalki, T.A., Almitani, K. and Ahmed, K.I. (2019c), "Participation Factor and Vibration of Carbon Nanotube with Vacancies", J. Nano Res., 57, 158-174. https://doi.org/10.4028/www.scientific.net/jnanor.57.158
  37. Eltaher, M.A., Omar, F.-A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., Int. J., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141
  38. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  39. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  40. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019a), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupl. Syst. Mech., Int. J., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247
  41. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019b), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircr. Spacecr. Sci., Int. J., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297
  42. Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., Int. J., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283
  43. Frankland, S. (2003), "The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation", Compos. Sci. Technol., 63(11), 1655-1661. https://doi.org/10.1016/s0266-3538(03)00059-9
  44. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., Int. J., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037
  45. Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., Int. J., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293
  46. Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., Int. J., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063
  47. Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., Int. J., 8(3), 179-196. https://doi.org/10.12989/amr.2019.8.3.179
  48. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., Int. J., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075
  49. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24
  50. Hashim, H.A. and Sadiq, I.A. (2021), "A five-variable refined plate theory for thermal buckling analysis of composite plates", Compos. Mater. Eng., Int. J., 3(2), 135-155. https://doi.org/10.12989/cme.2021.3.2.135
  51. Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic Properties of C and BxCyNz Composite Nanotubes", Phys. Rev. Lett., 80, 4502. https://doi.org/10.1103/PhysRevLett.80.4502
  52. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  53. Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013
  54. Jiang, H., Liu, B., Huang, Y. and Hwang, K.C. (2004), "Thermal expansion of single wall carbon nanotubes", J. Eng. Mater. Technol., 126(3), 265. https://doi.org/10.1115/1.1752925
  55. Kachapi, S.H.H. (2020), "Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell", Adv. Nano Res., Int. J., 9(4), 277-294. https://doi.org/10.12989/anr.2020.9.4.277
  56. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
  57. Karami, B. and Janghorban, M. (2019b), "A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams", Thin-Wall. Struct., 143, 106227. https://doi.org/10.1016/j.tws.2019.106227
  58. Karami, B. and Janghorban, M. (2019a), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002
  59. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018a), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349
  60. Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018b), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(1), 287-301. https://doi.org/10.1177/0954406218756451
  61. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2021), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., Int. J., 73(2), 191-207. https://doi.org/10.12989/sem.2020.73.2.191
  62. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. https://doi.org/10.12989/amr.2017.6.4.349
  63. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, Int. J., 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031
  64. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy, M.M.J. (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B, 58(20), 14013-14019. https://doi.org/10.1103/physrevb.58.14013
  65. Mahesh, V. and Harursampath, D. (2020), "Nonlinear vibration of functionally graded magneto-electroelastic higher order plates reinforced by CNTs using FEM", Eng. Comput. https://doi.org/10.1007/s00366-020-01098-5
  66. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020a), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., Int. J., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149
  67. Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020b), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., Int. J., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047
  68. Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. https://doi.org/10.1007/s00366-020-00976-2
  69. Mohammadimehr, M., Firouzeh, S., Pahlavanzadeh, M., Heidari, Y. and Irani-Rahaghi, M. (2020), "Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT", Comput. Concrete, Int. J., 26(1), 75-94. https://doi.org/10.12989/cac.2020.26.1.075
  70. Pourmoayed, A., Fard, K.M. and Rousta, B. (2021), "Free vibration analysis of sandwich structures reinforced by functionally graded carbon nanotubes", Compos. Mater. Eng., Int. J., 3(1), 1-23. https://doi.org/10.12989/cme.2021.3.1.001
  71. Robertson, J. (2004), "Realistic applications of CNTs", Materials Today, 7(10), 46-52. https://doi.org/10.1016/s1369-7021(04)00448-1
  72. Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers", Eng. Comput. https://doi.org/10.1007/s00366-020-01052-5
  73. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., Int. J., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329
  74. Salvetat, J.-P., Bonard, J.-M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A: Mater. Sci. Process., 69(3), 255-260. https://doi.org/10.1007/s003390050999
  75. Sedighi, H.M. and Yaghootian, A. (2016), "Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity", J. Appl. Mech. Tech. Phys., 57(1), 90-100. https://doi.org/10.1134/s0021894416010107
  76. Shanab, R.A., Attia, M.A., Mohamed, S.A. and Mohamed, N.A. (2020), "Effect of microstructure and surface energy on the static and dynamic characteristics of FG Timoshenko nanobeam embedded in an elastic medium", J. Nano Res., 61, 97-117. https://doi.org/10.4028/www.scientific.net/jnanor.61.97
  77. Shariati, A., Barati, M. R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., Int. J., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265
  78. She, G.-L., Liu, H.-B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., Int. J., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179
  79. Tadmor, E.B., Smith, G.S., Bernstein, N. and Kaxiras, E. (1999), "Mixed finite element and atomistic formulation for complex crystals", Phys. Rev. B, 59(1), 235-245. https://doi.org/10.1103/physrevb.59.235
  80. Tahouneh, V., Naei, M.H. and Mashhadi, M.M. (2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., Int. J., 34(2), 261-277. https://doi.org/10.12989/scs.2020.34.2.261
  81. Tayeb, B. and Daouadji, T.H. (2020), "Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive", Adv. Mater. Res., Int. J., 9(2), 133-153. https://doi.org/10.12989/amr.2020.9.2.133
  82. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135
  83. Tersoff, J. and Ruoff, R.S. (1994), "Structural properties of a carbon-nanotube crystal", Phys. Rev. Lett., 73(5), 676-679. https://doi.org/10.1103/physrevlett.73.676
  84. Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput. https://doi.org/10.1007/s00366-020-01154-0
  85. Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., Int. J., 9(2), 69-82. https://doi.org/10.12989/anr.2020.9.2.069
  86. Timoshenko, S.P. (1921), "LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(245), 744-746. https://doi.org/10.1080/14786442108636264
  87. Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L. and Wu, S.-Y. (2000), "Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation", Nature, 405(6788), 769-772. https://doi.org/10.1038/35015519
  88. Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0
  89. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
  90. Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A, 357(2), 130-135. https://doi.org/10.1016/j.physleta.2006.04.026.
  91. Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401
  92. Wilder, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E. and Dekker, C. (1998), "Electronic structure of atomically resolved carbon nanotubes", Nature, 391(6662), 59-62. https://doi.org/10.1038/34139
  93. Yaghoobi, H. and Taheri, F. (2020), "Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous-cellular core reinforced with graphene nanoplatelets", Compos. Struct., 252, 112700. https://doi.org/10.1016/j.compstruct.2020.112700
  94. Yao, X. and Han, Q. (2006), "Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change", J. Eng. Mater. Technol., 128(3), 419. https://doi.org/10.1115/1.2203102
  95. Ye, L.H., Liu, B.G. and Wang, D.S. (2001), "Ab initio molecular dynamics study on small carbon nanotubes", Chinese Phys. Lett., 18(11), 1496-1499. https://doi.org/10.1088/0256-307x/18/11/323
  96. Yoon, J., Ru, C.Q. and Mioduchowski, A. (2004), "Timoshenko-beam effects on transverse wave propagation in carbon nanotubes", Compos. Part B: Eng., 35(2), 87-93. https://doi.org/10.1016/j.compositesb.2003.09.002
  97. Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., Int. J., 37(5), 551-569. https://doi.org/10.12989/scs.2020.37.5.551
  98. Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., Int. J., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177