Browse > Article
http://dx.doi.org/10.12989/amr.2022.11.1.001

A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment  

Liani, Mohamed (Departement de physique, Faculte des Sciences Exactes, Universite Djilali Liabes de Sidi Bel Abbes)
Moulay, Noureddine (Departement de physique, Faculte des Sciences Exactes, Universite Djilali Liabes de Sidi Bel Abbes)
Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Addou, Farouk Yahia (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Bourada, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Publication Information
Advances in materials Research / v.11, no.1, 2022 , pp. 1-22 More about this Journal
Abstract
In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect. Based on the nonlocal continuum theory, the governing equations of motion are formulated by considering thermal effect. The influences of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. Results indicate significant dependence of natural frequencies on the nonlocal parameter, the temperature change, the aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs.
Keywords
nonlocal continuum theory; nonlocal integral Timoshenko beam model; singled walled carbon nanotubes (SWCNTs); small-scale effect; thermal effect; vibration characteristics;
Citations & Related Records
Times Cited By KSCI : 46  (Citation Analysis)
연도 인용수 순위
1 Benferhat, R., Daouadji, T.H. and Rabahi, A. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., Int. J., 9(4), 265-287. https://doi.org/10.12989/amr.2020.9.4.265   DOI
2 Benferhat, R., Daouadji, T.H. and Rabahi, A. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. https://doi.org/10.12989/cme.2021.3.1.041   DOI
3 Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., Int. J., 6(4), 339-356. https://doi.org/10.12989/anr.2018.6.4.339   DOI
4 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2021), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., Int. J., 73(2), 191-207. https://doi.org/10.12989/sem.2020.73.2.191   DOI
5 Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2017), "Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element", Adv. Mater. Res., 6(4), 349-361. https://doi.org/10.12989/amr.2017.6.4.349   DOI
6 Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, Int. J., 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031   DOI
7 Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy, M.M.J. (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B, 58(20), 14013-14019. https://doi.org/10.1103/physrevb.58.14013   DOI
8 Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020a), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., Int. J., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149   DOI
9 Mirjavadi, S.S., Nikookar, M., Mollaee, S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020b), "Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force", Adv. Nano Res., Int. J., 9(1), 47-58. https://doi.org/10.12989/anr.2020.9.1.047   DOI
10 Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 37(4), 2823-2836. https://doi.org/10.1007/s00366-020-00976-2   DOI
11 Attia, M.A., Shanab, R.A., Mohamed, S.A. and Mohamed, N.A. (2019), "Surface energy effects on the nonlinear free vibration of functionally graded Timoshenko nanobeams based on modified couple stress theory", Int. J. Struct. Stabil. Dyn., 19(11), 1950127. https://doi.org/10.1142/s021945541950127x   DOI
12 Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput. https://doi.org/10.1007/s00366-020-01080-1   DOI
13 Robertson, J. (2004), "Realistic applications of CNTs", Materials Today, 7(10), 46-52. https://doi.org/10.1016/s1369-7021(04)00448-1   DOI
14 Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J., Dai, H., Liu, L. and Wu, S.-Y. (2000), "Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation", Nature, 405(6788), 769-772. https://doi.org/10.1038/35015519   DOI
15 Mohammadimehr, M., Firouzeh, S., Pahlavanzadeh, M., Heidari, Y. and Irani-Rahaghi, M. (2020), "Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT", Comput. Concrete, Int. J., 26(1), 75-94. https://doi.org/10.12989/cac.2020.26.1.075   DOI
16 Pourmoayed, A., Fard, K.M. and Rousta, B. (2021), "Free vibration analysis of sandwich structures reinforced by functionally graded carbon nanotubes", Compos. Mater. Eng., Int. J., 3(1), 1-23. https://doi.org/10.12989/cme.2021.3.1.001   DOI
17 Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers", Eng. Comput. https://doi.org/10.1007/s00366-020-01052-5   DOI
18 Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., Int. J., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329   DOI
19 Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019a), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., Int. J., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021   DOI
20 Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019b), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., Int. J., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269   DOI
21 Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated nonrectangular plates by discrete singular convolution method", Eng. Comput. https://doi.org/10.1007/s00366-020-01168-8   DOI
22 Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotubereinforced composite microbeams", Mathe. Methods Appl. Sci. https://doi.org/10.1002/mma.7069   DOI
23 Shanab, R.A., Attia, M.A., Mohamed, S.A. and Mohamed, N.A. (2020), "Effect of microstructure and surface energy on the static and dynamic characteristics of FG Timoshenko nanobeam embedded in an elastic medium", J. Nano Res., 61, 97-117. https://doi.org/10.4028/www.scientific.net/jnanor.61.97   DOI
24 Shariati, A., Barati, M. R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., Int. J., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265   DOI
25 She, G.-L., Liu, H.-B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., Int. J., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179   DOI
26 Salvetat, J.-P., Bonard, J.-M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A: Mater. Sci. Process., 69(3), 255-260. https://doi.org/10.1007/s003390050999   DOI
27 Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R.E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature, 384(6605), 147-150. https://doi.org/10.1038/384147a0   DOI
28 Dehghan, M., Ebrahimi, F. and Vinyas, M. (2019), "Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes", Eng. Comput., 36, 1687-1703. https://doi.org/10.1007/s00366-019-00790-5   DOI
29 Dharap, P., Li, Z., Nagarajaiah, S. and Barrera, E.V. (2004), "Nanotube film based on single-wall carbon nanotubes for strain sensing", Nanotechnology, 15(3), 379-382. https://doi.org/10.1088/0957-4484/15/3/026   DOI
30 Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., Int. J., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147   DOI
31 Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Computat. Des., Int. J., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177   DOI
32 Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., Int. J., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.615   DOI
33 Bao, W.X., Zhu, C.C. and Cui, W.Z. (2004), "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics", Physica B: Condensed Matter, 352(1-4), 156-163. https://doi.org/10.1016/j.physb.2004.07.005   DOI
34 Barati, M.R. and Shahverdi, H. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Braz. Soc. Mech. Sci. Eng., 42, 33. https://doi.org/10.1007/s40430-019-2118-8   DOI
35 Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircr. Spacecr. Sci., Int. J., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001   DOI
36 Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells", Adv. Nano Res., Int. J., 9(1), 33-45. https://doi.org/10.12989/anr.2020.9.1.033   DOI
37 Bahaadini, R., Hosseini, M. and Amiri, M. (2020), "Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field", Eng. Comput., 37(4), 2877-2889. https://doi.org/10.1007/s00366-020-00980-6   DOI
38 Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005   DOI
39 Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020b), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., Int. J., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033   DOI
40 Ahmed, R.A., Moustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020a), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., Int. J., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413   DOI
41 Dresselhaus, M.S., Dresselhaus, G. and Eklund, P.C. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, USA.
42 Dresselhaus, M.S., Lin, Y.M., Rabin, O., Jorio, A., Souza Filho, A.G., Pimenta, M.A., Saito, R., Samsonidze, G. and Dresselhaus, G. (2003), "Nanowires and nanotubes", Mater. Sci. Eng.: C, 23(1-2), 129-140. https://doi.org/10.1016/s0928-4931(02)00240-0   DOI
43 Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 232(11), 2067-2078. https://doi.org/10.1177/0954406217713518   DOI
44 Ebrahimi, F. and Barati, M.R. (2019), "A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets", Iran J. Sci. Technol. Trans. Mech. Eng., 43, 205-220. https://doi.org/10.1007/s40997-017-0131-z   DOI
45 Eltaher, M.A., Agwa, M. and Kabeel, A. (2018), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Computat. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136   DOI
46 Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019a), "Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/jnanor.57.136   DOI
47 Eltaher, M.A., Almalki, T.A., Almitani, K.H., Ahmed, K.I.E. and Abdraboh, A.M. (2019b), "Modal participation of fixed-fixed single-walled carbon nanotube with vacancies", Int. J. Adv. Struct. Eng., 11(2), 151-163. https://doi.org/10.1007/s40091-019-0222-8   DOI
48 Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648   DOI
49 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175   DOI
50 Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0   DOI
51 Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A, 357(2), 130-135. https://doi.org/10.1016/j.physleta.2006.04.026.   DOI
52 Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401. https://doi.org/10.1088/0957-4484/18/10/105401   DOI
53 Wilder, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E. and Dekker, C. (1998), "Electronic structure of atomically resolved carbon nanotubes", Nature, 391(6662), 59-62. https://doi.org/10.1038/34139   DOI
54 Yaghoobi, H. and Taheri, F. (2020), "Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous-cellular core reinforced with graphene nanoplatelets", Compos. Struct., 252, 112700. https://doi.org/10.1016/j.compstruct.2020.112700   DOI
55 Yao, X. and Han, Q. (2006), "Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change", J. Eng. Mater. Technol., 128(3), 419. https://doi.org/10.1115/1.2203102   DOI
56 Tadmor, E.B., Smith, G.S., Bernstein, N. and Kaxiras, E. (1999), "Mixed finite element and atomistic formulation for complex crystals", Phys. Rev. B, 59(1), 235-245. https://doi.org/10.1103/physrevb.59.235   DOI
57 Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., Int. J., 34(5), 657-670. https://doi.org/10.12989/SCS.2020.34.5.657   DOI
58 Eltaher, M.A., Omar, F.-A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., Int. J., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141   DOI
59 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., Int. J., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037   DOI
60 Kachapi, S.H.H. (2020), "Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell", Adv. Nano Res., Int. J., 9(4), 277-294. https://doi.org/10.12989/anr.2020.9.4.277   DOI
61 Karami, B. and Janghorban, M. (2019a), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002   DOI
62 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5   DOI
63 Eltaher, M.A., Almalki, T.A., Almitani, K. and Ahmed, K.I. (2019c), "Participation Factor and Vibration of Carbon Nanotube with Vacancies", J. Nano Res., 57, 158-174. https://doi.org/10.4028/www.scientific.net/jnanor.57.158   DOI
64 Tahouneh, V., Naei, M.H. and Mashhadi, M.M. (2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., Int. J., 34(2), 261-277. https://doi.org/10.12989/scs.2020.34.2.261   DOI
65 Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., Int. J., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177   DOI
66 Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., Int. J., 2(2), 125-140. http://doi.org/10.12989/cme.2020.2.2.125   DOI
67 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., Int. J., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147   DOI
68 Ye, L.H., Liu, B.G. and Wang, D.S. (2001), "Ab initio molecular dynamics study on small carbon nanotubes", Chinese Phys. Lett., 18(11), 1496-1499. https://doi.org/10.1088/0256-307x/18/11/323   DOI
69 Yoon, J., Ru, C.Q. and Mioduchowski, A. (2004), "Timoshenko-beam effects on transverse wave propagation in carbon nanotubes", Compos. Part B: Eng., 35(2), 87-93. https://doi.org/10.1016/j.compositesb.2003.09.002   DOI
70 Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., Int. J., 37(5), 551-569. https://doi.org/10.12989/scs.2020.37.5.551   DOI
71 Tayeb, B. and Daouadji, T.H. (2020), "Improved analytical solution for slip and interfacial stress in composite steel-concrete beam bonded with an adhesive", Adv. Mater. Res., Int. J., 9(2), 133-153. https://doi.org/10.12989/amr.2020.9.2.133   DOI
72 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135   DOI
73 Tersoff, J. and Ruoff, R.S. (1994), "Structural properties of a carbon-nanotube crystal", Phys. Rev. Lett., 73(5), 676-679. https://doi.org/10.1103/physrevlett.73.676   DOI
74 Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput. https://doi.org/10.1007/s00366-020-01154-0   DOI
75 Timesli, A. (2020), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., Int. J., 9(2), 69-82. https://doi.org/10.12989/anr.2020.9.2.069   DOI
76 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803   DOI
77 Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., Int. J., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283   DOI
78 Mahesh, V. and Harursampath, D. (2020), "Nonlinear vibration of functionally graded magneto-electroelastic higher order plates reinforced by CNTs using FEM", Eng. Comput. https://doi.org/10.1007/s00366-020-01098-5   DOI
79 Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019a), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coupl. Syst. Mech., Int. J., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247   DOI
80 Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019b), "Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory", Adv. Aircr. Spacecr. Sci., Int. J., 6(4), 297-314. https://doi.org/10.12989/aas.2019.6.4.297   DOI
81 Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical Buckling Load of Triple-Walled Carbon Nanotube Based on Nonlocal Elasticity Theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/jnanor.62.108   DOI
82 Frankland, S. (2003), "The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation", Compos. Sci. Technol., 63(11), 1655-1661. https://doi.org/10.1016/s0266-3538(03)00059-9   DOI
83 Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., Int. J., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293   DOI
84 Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., Int. J., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063   DOI
85 Hamad, L.B., Khalaf, B.S. and Faleh, N.M. (2019), "Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials", Adv. Mater. Res., Int. J., 8(3), 179-196. https://doi.org/10.12989/amr.2019.8.3.179   DOI
86 Timoshenko, S.P. (1921), "LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(245), 744-746. https://doi.org/10.1080/14786442108636264   DOI
87 Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., Int. J., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075   DOI
88 Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24   DOI
89 Hashim, H.A. and Sadiq, I.A. (2021), "A five-variable refined plate theory for thermal buckling analysis of composite plates", Compos. Mater. Eng., Int. J., 3(2), 135-155. https://doi.org/10.12989/cme.2021.3.2.135   DOI
90 Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic Properties of C and BxCyNz Composite Nanotubes", Phys. Rev. Lett., 80, 4502. https://doi.org/10.1103/PhysRevLett.80.4502   DOI
91 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0   DOI
92 Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013   DOI
93 Jiang, H., Liu, B., Huang, Y. and Hwang, K.C. (2004), "Thermal expansion of single wall carbon nanotubes", J. Eng. Mater. Technol., 126(3), 265. https://doi.org/10.1115/1.1752925   DOI
94 Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018b), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 233(1), 287-301. https://doi.org/10.1177/0954406218756451   DOI
95 Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205   DOI
96 Karami, B. and Janghorban, M. (2019b), "A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams", Thin-Wall. Struct., 143, 106227. https://doi.org/10.1016/j.tws.2019.106227   DOI
97 Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018a), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349   DOI
98 Sedighi, H.M. and Yaghootian, A. (2016), "Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity", J. Appl. Mech. Tech. Phys., 57(1), 90-100. https://doi.org/10.1134/s0021894416010107   DOI