Browse > Article
http://dx.doi.org/10.5695/JKISE.2019.52.1.6

The Influence of Process Variables on the Thin Film Growth of Metal-Halide Perovskites by the Solution Shear Coating  

Choe, Jihye (Department of Materials Science and Engineering, Hanbat National University)
Song, Jiho (Department of Materials Science and Engineering, Hanbat National University)
Jeong, Jiyoung (Department of Materials Science and Engineering, Hanbat National University)
Chung, Choong-Heui (Department of Materials Science and Engineering, Hanbat National University)
Kim, Jaekyun (Department of Photonics and Nanoelectronics, Hanyang University)
Hong, Ki-Ha (Department of Materials Science and Engineering, Hanbat National University)
Publication Information
Journal of the Korean institute of surface engineering / v.52, no.1, 2019 , pp. 6-15 More about this Journal
Abstract
Metal-halide perovskite (MHP) solar cell is a promising candidate for next-generation flexible devices and the BIPV (Building-integrated photovoltaics) because it can exhibit high power conversion efficiencies over 23%, good bendability and low processing cost. However, MHP solar cells are commonly fabricated by the spin coating that is not a reliable method to produce large-scale commercial solar cells. A shear coating can be one of the potential candidates for the large-scale deposition method of MHP films. In this work, the influences of the process parameters such as solvents of precursor solution, substrate temperature, concentrations of precursor solution, and annealing time on the thin film growth of MHP were investigated for the shear coating process. This study presents the possibility of the shear coating process for large-scaled perovskite film fabrication and reveals the role of process condition in the thin film growth of perovskites.
Keywords
Perovskite Solar Cells; Solution Shear Coating; Film Growth; Crystallinity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin and M. Gratzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science, 358 (2017) 768-771.   DOI
2 H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. de Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z. -H. Lu, Z. Yang, S. Hoogland and E. H. Sargent, Efficient and stable solutionprocessed planar perovskite solar cells via contact passivation, Science, 355 (2017) 722-726.   DOI
3 N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13 (2014) 897-903.   DOI
4 M. Liu, M. B. Johnston and Henry J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501 (2013) 395-398.   DOI
5 J. Burschka, N. Pellet, S. -J. Moon, R. H. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Sequential deposition as a route to highperformance perovskite-sensitized solar cells, Nature, 499 (2013) 316-319.   DOI
6 W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348 (2015) 1234-1237.   DOI
7 Y. Diao, L. Shaw, Z. Bao and S. C. B. Mannsfeld, Morphology control strategies for solutionprocessed organic semiconductor thin films, Energy Environ. Sci., 7 (2014) 2145-2159.   DOI
8 J. H. Heo, M. H. Lee, M. H. Jang and S. H. Im, Highly efficient $CH_3NH_3PbI_{3-x}Cl_x$ mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating, J. Mater. Chem. A, 4 (2016) 17636-17642.   DOI
9 X. Ren, Z. Yang, D. Yang, X. Zhang, D. Cui, Y. Liu, Q. Wei, H. Fan and S. Liu, Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature, Nanoscale, 8 (2016) 3816-3822.   DOI
10 Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuan and J. Ding, A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions, RSC Adv., 5 (2015) 60562-60569.   DOI
11 W. Nie, H. Tsai, R. Asadpour, J. -C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M Chhowalla, S. Tretiak, M. A. Alam, H. -L. Wang and A. D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347 (2015) 522-525.   DOI
12 Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang, Solvent annealing of perovskite?induced crystal growth for photovoltaic?device efficiency enhancement, Adv. Mater., 26 (2014) 6503-6509.   DOI
13 Y. Diao, B. C-K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld and Z. Bao, Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains, Nat. Mater., 12 (2013) 665-671.   DOI
14 G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney and Z. Bao, Tuning charge transport in solution-sheared organic semiconductors using lattice strain, Nature, 480 (2011) 504-508.   DOI
15 M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. -B. Cheng and L. Spiccia, A fast deposition?crystallization procedure for highly efficient lead iodide perovskite thin?film solar cells, Angew. Chem., 126 (2014) 10056-10061.   DOI
16 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature, 389 (1997) 827-829.   DOI
17 H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. -S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science, 345 (2014) 542-546.   DOI
18 D. -Y. Son, J. -W. Lee, Y. J. Choi, I. -H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim and N. -G. Park, Self-formed grain boundary healing layer for highly efficient $CH_3$ $NH_3PbI_3$ perovskite solar cells, Nat. Energy, 1 (2016) 16081-16088.   DOI
19 Y. Deng, Q. Wang, Y. Yuan and J. Huang, Vividly colorful hybrid perovskite solar cells by doctorblade coating with perovskite photonic nanostructures, Mater. Horiz., 2 (2015) 578-583.   DOI
20 M. Golubitsky, J. W. Swift and E. Knobloch, Symmetries and pattern selection in Rayleigh-Benard convection, Physica D, 10 (1984) 249-276.   DOI
21 M. Yang, Z. Li, M. O. Reese, O. G. Reid, D. H. Kim, S. Siol, T. R. Klein, Y. Yan, J. J. Berry, M. F. A. M. van Hest and K. Zhu, Perovskite ink with wide processing window for scalable highefficiency solar cells, Nat. Energy, 2 (2017) 17038.   DOI
22 M. He, B. Li, X. Cui, B. Jiang, Y. He, Y. Chen, D. O'Neil, P. Szymanski, M. A. EI-Sayed, J. Huang and Z. Lin, Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cell, Nat. Commun., 8 (2017) 16045.   DOI