1 |
Liu, J., Ren, J.-C., Shen, T., Liu, X., Butch, C.J., Li, S. and Liu, W. (2020), "Asymmetric Schottky contacts in van der Waals metal-semiconductor-metal structures based on two-dimensional Janus materials", Research, 2020, 6727524. https://doi.org/10.34133/2020/6727524.
DOI
|
2 |
Maslov, M.M., Grishakov, K.S., Gimaldinova, M.A. and Katin, K.P. (2020), "Carbon vs silicon polyprismanes: a comparative study of metallic sp3-hybridized allotropes", Fuller. Nanotub. Car. N., 28(2), 97-103. https://doi.org/10.1080/1536383X.2019.1680974.
DOI
|
3 |
Meng, J. and Li, Z. (2020), "Schottky-contacted nanowire sensors", Adv. Mater., 32(28), 2000130. https://doi.org/10.1002/adma.202000130.
DOI
|
4 |
Murali, R. (Ed.) (2012), Graphene Nanoelectronics: From Materials to Circuits, Springer, NY, U.S.A. https://doi.org/10.1007/978-1-4614-0548-1.
|
5 |
Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on I-V characteristics of CNTFETs", Adv. Nano Res., Int. J., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061.
DOI
|
6 |
Nedrygailov, I.I., Heo, Y., Kim, H. and Park, J.Y. (2019), "Charge transfer during the Aluminum-Water reaction studied with Schottky nanodiode sensors", ACS Omega, 4(24), 20838-20843. https://doi.org/10.1021/acsomega.9b03397.
DOI
|
7 |
Park, Y.J. and Somorjai, G.A. (2020), "Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions", MRS Bull., 45(1), 26-31. https://doi.org/10.1557/mrs.2019.295.
DOI
|
8 |
Paul, W., Oliver, D. and Grutter, P. (2014), "Indentation-formed nanocontacts: an atomic-scale perspective", Phys. Chem. Chem. Phys., 16(18), 8201-8222. https://doi.org/10.1039/C3CP54869D.
DOI
|
9 |
Lee, H., Yoon, S., Jo, J., Jeon, B., Hyeon, T., An, K. and Park, J.Y. (2019), "Enhanced hot electron generation by inverse metal-oxide interfaces on catalytic nanodiode", Faraday Discuss., 214, 353-364. https://doi.org/10.1039/C8FD00136G.
DOI
|
10 |
Agrait, N., Yeyati, A.L. and van Ruitenbeek, J.M. (2003), "Quantum properties of atomic-sized conductors", Phys. Rep., 377, 81-279. https://doi.org/10.1016/S0370-1573(02)00633-6.
DOI
|
11 |
Smidstrup, S., Stradi, D., Wellendorff, J., Khomyakov, P.A., Vej-Hansen, U.G., Lee, M-E., Ghosh, T., Jonsson, E., Jonsson, H. and Stokbro, K. (2017), "First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach", Phys. Rev. B, 96(19), 195309. https://doi.org/10.1103/PhysRevB.96.195309.
DOI
|
12 |
Stokbro, K. (2008), "First-principles modeling of electron transport" J. Phys.: Condens. Matter., 20(6), 064216. https://doi.org/10.1088/0953-8984/20/6/064216.
DOI
|
13 |
Wang, J., Zhou, X., Yang, M., Cao, D., Chen, X. and Shua, H. (2020), "Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions", J. Mater. Chem. C, 8(22), 7350-7357. https://doi.org/10.1039/d0tc01405b.
DOI
|
14 |
Kim, H., Kim, Y.J., Jung, Y.S. and Park, J.Y. (2020), "Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide", Nanosc. Adv., 2(10), 4410-4416. https://doi.org/10.1039/d0na00602e.
DOI
|
15 |
Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.
DOI
|
16 |
Ahsan, S.A., Singh, S.K., Yadav, C., Marin, E.G., Kloes, A. and Schwarz, M. (2020), "A comprehensive physics-based current-voltage SPICE compact model for 2-D-material-mased topcontact bottom-gated Schottky-Barrier FETs", IEEE T. Electron Dev., 67(11), 5188-5195. https://doi.org/10.1109/TED.2020.3020900.
DOI
|
17 |
Cuevas, J.C. and Scheer, E. (2017), Molecular Electronics (An Introduction to Theory and Experiment), (2nd Edition), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, U.S.A.
|
18 |
Landauer, R. (1970), "Electrical resistance of disordered one-dimensional lattices", Philos. Mag., 21(172), 863-867. http://doi.org/10.1080/14786437008238472.
DOI
|
19 |
Wu, C.-P., Chen, Y.-H., Hong, Z.-L. and Lin, C.-H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.
DOI
|
20 |
Xiang, R., Inoue, T., Zheng Y., Kumamoto, A., Qian, Y., Sato, Y. Liu, M., Tang, D., Gokhale, D., Guo, J., Hisama, K., Yotsumoto, S., Ogamoto, T., Arai, H., Kobayashi, Y., Zhang, H., Hou, B., Anisimov, A., Maruyama, M., Miyata, Y., Okada, S., Chiashi, S., Li, Y., Kong, J., Kauppinen, E.I., Ikuhara, Y., Suenaga, K. and Maruyama, S. (2020), "One-dimensional van der Waals heterostructures", Science, 367(6477), 537-542. https://doi.org/10.1126/science.aaz2570.
DOI
|
21 |
Yan, Q., Zhou, G., Hao, S., Wu, J. and Duan, W. (2006), "Mechanism of nanoelectronic switch based on telescoping carbon nanotubes", Appl. Phys. Lett., 88(17), 173107. http://doi.org/10.1063/1.2198481.
DOI
|
22 |
Pinto, N.J. and Gonzalez, R. (2006), "Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode", Appl. Phys. Lett., 89(3), 033505. https://doi.org/10.1063/1.2227758.
DOI
|
23 |
Pomorski, P., Roland, C., Guo, H. and Wang, J. (2003), "First-principles investigation of carbon nanotube capacitance", Phys. Rev. B, 67(16), 161404(R). https://doi.org/10.1103/PhysRevB.67.161404.
DOI
|
24 |
Grabert, H. and Devoret, M.H. (Eds.) (1992), Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures, Springer Science+Business Media, NY, U.S.A. https://doi.org/10.1007/978-1-4757-2166-9.
|
25 |
Cumings, J. and Zettl, A. (2000), "Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes", Science, 289 (5479), 602-604. https://doi.org/10.1126/science.289.5479.602.
DOI
|
26 |
Ferre, N., Filatov, M. and Huix-Rotllant, M. (eds.) (2016), Density-Functional Methods for Excited States, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-22081-9.
|
27 |
Fuhrer, M., Nygard, J., Shih, L., Foreo, M., Yoon, Y.-G., Mazzoni, M.S.C., Choi, H.J., Ihm, J.S., Louie, S.G., Zettl, A. and McEuen, P.L. (2000), "Crossed nanotube junctions", Science, 288(5465), 494-497. https://doi.org/10.1126/science.288.5465.494.
DOI
|
28 |
Katin, K.P., Grishakov, K.S., Gimaldinova, M.A. and Maslov, M.M. (2020), "Silicon rebirth: Ab initio prediction of metallic sp3-hybridized silicon allotropes", Computat. Mater. Sci., 174, 109480. https://doi.org/10.1016/j.commatsci.2019.109480.
DOI
|
29 |
Li, R., Zhang, J., Hou, S., Qian, Z., Shen, Z., Zhao, X. and Xue, Z. (2007), "A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration", Chem. Phys., 336(2-3), 127-135. https://doi.org/10.1016/j.chemphys.2007.06.011.
DOI
|
30 |
Lee, Y.K., Choi, H., Lee, H., Lee, C., Choi, J.S., Choi, C.-G., Hwang, E. and Park, J.Y. (2016), "Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes", Scientific Reports, 6(1), 27549. https://doi.org/10.1038/srep27549.
DOI
|
31 |
Lan, Y., Xia L.-X., Huang, T., Xu, W., Huang, G.-F., Hu, W. and Huang, W.-Q. (2020), "Strain and electric field controllable Schottky Barriers and contact types in Graphene-MoTe2 van der Waals Heterostructure", Nanosc. Res. Lett., 15(1), 180. https://doi.org/10.1186/s11671-020-03409-7.
DOI
|
32 |
Sergeyev, D. and Zhanturina, N. (2019), "Simulation of electrical characteristics of switching nanostructures "Pt - TiO - Pt" and "Pt - NiO - Pt" with memory", Radioengeeniring, 28(4), 714-720. https://doi.org/10.13164/re.2019.0714.
DOI
|
33 |
Kiguchi, M. (Ed.) (2016), Single-Molecule Electronics: An Introduction to Synthesis, Measurement and Theory, Springer Science+Business Media, Singapore. https://doi.org/10.1007/978-981-10-0724-8.
|
34 |
Pomorski, P., Pastewka, L., Roland, C., Guo, H. and Wang, J. (2004), "Capacitance, induced charges, and bound states of biased carbon nanotube systems", Phys. Rev. B, 69(11), 115418. https://doi.org/10.1103/PhysRevB.69.115418.
DOI
|
35 |
Schonenberger, C., van Houten, H. and Beenakker, C.W.J. (1993), "Polarization charge relaxation and the Coulomb staircase in ultrasmall double-barrier tunnel junctions", Physica B, 189(1-4), 218-224. https://doi.org/10.1016/0921-4526(93)90163-Z.
DOI
|
36 |
Sergeyev, D. (2020a), "Single electron transistor based on endohedral metallofullerenes Me@C60 (Me = Li, Na, K)", J. Nano-Electron. Phys., 12(3), 03017. https://doi.org/10.21272/jnep.12(3).03017.
DOI
|
37 |
Sergeyev, D. (2020b), "Features of the electrical characteristics of an octagraphene nanotube", J. Nano-Electron. Phys., 11(6), 06022. https://doi.org/10.21272/jnep.11(6).06022.
|
38 |
Sergeyev, D. (2020c), "Specific features of electron transport in a molecular nanodevice containing a nitroamine redox center", Tech. Phys., 65(4), 573-577. https://doi.org/10.1134/S1063784220040180.
DOI
|
39 |
Sergeyev, D. and Shunkeyev, K. (2018), "Investigation of transport parameters of graphene-based nanostructures", Russ. Phys. J., 60(11), 1938-1945. https://doi.org/10.1007/s11182-018-1306-9.
DOI
|
40 |
Dragoman, M. and Dragoman, D. (2017), 2D Nanoelectronics: Physics and Devices of Atomically Thin Materials, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-48437-2.
|
41 |
Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77(18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.
DOI
|
42 |
Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A. and Vej-Hansen, U.G. (2020), "QuantumATK: An integrated platform of electronic and atomic-scale modelling tools", J. Phys.: Condens. Matter., 32(1), 015901. https://doi.org/10.1088/1361-648X/ab4007.
DOI
|