Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.5.471

One-dimensional Schottky nanodiode based on telescoping polyprismanes  

Sergeyev, Daulet (Department of Physics, K. Zhubanov Aktobe Regional State University)
Publication Information
Advances in nano research / v.10, no.5, 2021 , pp. 471-479 More about this Journal
Abstract
In the framework of the density functional theory combined with the method of non-equilibrium Green functions (DFT + NEGF), the electric transport properties of a one-dimensional nanodevice consisting of telescoping polyprismanes with various types of electrical conductivity were studied. Its transmission spectra, density of state, current-voltage characteristic, and differential conductivity are determined. It was shown that C[14,17], C[14,11], C[14,16], C[14,10] show a metallic nature, and polyprismanes C[14,5], C[14,4] possess semiconductor properties and has a band gap of 0.4 eV and 0.6 eV, respectively. It was found that, when metal C[14,11], C[14,10] and semiconductor C[14,5], C[14,4] polyprismanes are coaxially connected, a Schottky barrier is formed and a weak diode effect is observed, i.e., manifested valve (rectifying) property of telescoping polyprismanes. The enhancement of this effect occurs in the nanodevices C[14,17] - C[14,11] - C[14,5] and C[14,16] - C[14,10] - C[14,4], which have the properties of nanodiode and back nanodiode, respectively. The simulation results can be useful in creating promising active one-dimensional elements of nanoelectronics.
Keywords
polyprisman; Schottky nanodiode; electron transport; current-voltage characteristic; differential conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, J., Ren, J.-C., Shen, T., Liu, X., Butch, C.J., Li, S. and Liu, W. (2020), "Asymmetric Schottky contacts in van der Waals metal-semiconductor-metal structures based on two-dimensional Janus materials", Research, 2020, 6727524. https://doi.org/10.34133/2020/6727524.   DOI
2 Maslov, M.M., Grishakov, K.S., Gimaldinova, M.A. and Katin, K.P. (2020), "Carbon vs silicon polyprismanes: a comparative study of metallic sp3-hybridized allotropes", Fuller. Nanotub. Car. N., 28(2), 97-103. https://doi.org/10.1080/1536383X.2019.1680974.   DOI
3 Meng, J. and Li, Z. (2020), "Schottky-contacted nanowire sensors", Adv. Mater., 32(28), 2000130. https://doi.org/10.1002/adma.202000130.   DOI
4 Murali, R. (Ed.) (2012), Graphene Nanoelectronics: From Materials to Circuits, Springer, NY, U.S.A. https://doi.org/10.1007/978-1-4614-0548-1.
5 Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on I-V characteristics of CNTFETs", Adv. Nano Res., Int. J., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061.   DOI
6 Nedrygailov, I.I., Heo, Y., Kim, H. and Park, J.Y. (2019), "Charge transfer during the Aluminum-Water reaction studied with Schottky nanodiode sensors", ACS Omega, 4(24), 20838-20843. https://doi.org/10.1021/acsomega.9b03397.   DOI
7 Park, Y.J. and Somorjai, G.A. (2020), "Nanodiode-based hot electrons: Influence on surface chemistry and catalytic reactions", MRS Bull., 45(1), 26-31. https://doi.org/10.1557/mrs.2019.295.   DOI
8 Paul, W., Oliver, D. and Grutter, P. (2014), "Indentation-formed nanocontacts: an atomic-scale perspective", Phys. Chem. Chem. Phys., 16(18), 8201-8222. https://doi.org/10.1039/C3CP54869D.   DOI
9 Lee, H., Yoon, S., Jo, J., Jeon, B., Hyeon, T., An, K. and Park, J.Y. (2019), "Enhanced hot electron generation by inverse metal-oxide interfaces on catalytic nanodiode", Faraday Discuss., 214, 353-364. https://doi.org/10.1039/C8FD00136G.   DOI
10 Agrait, N., Yeyati, A.L. and van Ruitenbeek, J.M. (2003), "Quantum properties of atomic-sized conductors", Phys. Rep., 377, 81-279. https://doi.org/10.1016/S0370-1573(02)00633-6.   DOI
11 Yan, Q., Zhou, G., Hao, S., Wu, J. and Duan, W. (2006), "Mechanism of nanoelectronic switch based on telescoping carbon nanotubes", Appl. Phys. Lett., 88(17), 173107. http://doi.org/10.1063/1.2198481.   DOI
12 Smidstrup, S., Stradi, D., Wellendorff, J., Khomyakov, P.A., Vej-Hansen, U.G., Lee, M-E., Ghosh, T., Jonsson, E., Jonsson, H. and Stokbro, K. (2017), "First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach", Phys. Rev. B, 96(19), 195309. https://doi.org/10.1103/PhysRevB.96.195309.   DOI
13 Stokbro, K. (2008), "First-principles modeling of electron transport" J. Phys.: Condens. Matter., 20(6), 064216. https://doi.org/10.1088/0953-8984/20/6/064216.   DOI
14 Wang, J., Zhou, X., Yang, M., Cao, D., Chen, X. and Shua, H. (2020), "Interface and polarization effects induced Schottky-barrier-free contacts in two-dimensional MXene/GaN heterojunctions", J. Mater. Chem. C, 8(22), 7350-7357. https://doi.org/10.1039/d0tc01405b.   DOI
15 Wu, C.-P., Chen, Y.-H., Hong, Z.-L. and Lin, C.-H. (2018), "Nonlinear vibration analysis of an embedded multi-walled carbon nanotube", Adv. Nano Res., Int. J., 6(2), 163-182. https://doi.org/10.12989/anr.2018.6.2.163.   DOI
16 Xiang, R., Inoue, T., Zheng Y., Kumamoto, A., Qian, Y., Sato, Y. Liu, M., Tang, D., Gokhale, D., Guo, J., Hisama, K., Yotsumoto, S., Ogamoto, T., Arai, H., Kobayashi, Y., Zhang, H., Hou, B., Anisimov, A., Maruyama, M., Miyata, Y., Okada, S., Chiashi, S., Li, Y., Kong, J., Kauppinen, E.I., Ikuhara, Y., Suenaga, K. and Maruyama, S. (2020), "One-dimensional van der Waals heterostructures", Science, 367(6477), 537-542. https://doi.org/10.1126/science.aaz2570.   DOI
17 Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.   DOI
18 Pinto, N.J. and Gonzalez, R. (2006), "Electrospun hybrid organic/inorganic semiconductor Schottky nanodiode", Appl. Phys. Lett., 89(3), 033505. https://doi.org/10.1063/1.2227758.   DOI
19 Pomorski, P., Roland, C., Guo, H. and Wang, J. (2003), "First-principles investigation of carbon nanotube capacitance", Phys. Rev. B, 67(16), 161404(R). https://doi.org/10.1103/PhysRevB.67.161404.   DOI
20 Kim, H., Kim, Y.J., Jung, Y.S. and Park, J.Y. (2020), "Enhanced flux of chemically induced hot electrons on a Pt nanowire/Si nanodiode during decomposition of hydrogen peroxide", Nanosc. Adv., 2(10), 4410-4416. https://doi.org/10.1039/d0na00602e.   DOI
21 Katin, K.P., Grishakov, K.S., Gimaldinova, M.A. and Maslov, M.M. (2020), "Silicon rebirth: Ab initio prediction of metallic sp3-hybridized silicon allotropes", Computat. Mater. Sci., 174, 109480. https://doi.org/10.1016/j.commatsci.2019.109480.   DOI
22 Ahsan, S.A., Singh, S.K., Yadav, C., Marin, E.G., Kloes, A. and Schwarz, M. (2020), "A comprehensive physics-based current-voltage SPICE compact model for 2-D-material-mased topcontact bottom-gated Schottky-Barrier FETs", IEEE T. Electron Dev., 67(11), 5188-5195. https://doi.org/10.1109/TED.2020.3020900.   DOI
23 Cuevas, J.C. and Scheer, E. (2017), Molecular Electronics (An Introduction to Theory and Experiment), (2nd Edition), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, U.S.A.
24 Landauer, R. (1970), "Electrical resistance of disordered one-dimensional lattices", Philos. Mag., 21(172), 863-867. http://doi.org/10.1080/14786437008238472.   DOI
25 Cumings, J. and Zettl, A. (2000), "Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes", Science, 289 (5479), 602-604. https://doi.org/10.1126/science.289.5479.602.   DOI
26 Ferre, N., Filatov, M. and Huix-Rotllant, M. (eds.) (2016), Density-Functional Methods for Excited States, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-22081-9.
27 Fuhrer, M., Nygard, J., Shih, L., Foreo, M., Yoon, Y.-G., Mazzoni, M.S.C., Choi, H.J., Ihm, J.S., Louie, S.G., Zettl, A. and McEuen, P.L. (2000), "Crossed nanotube junctions", Science, 288(5465), 494-497. https://doi.org/10.1126/science.288.5465.494.   DOI
28 Grabert, H. and Devoret, M.H. (Eds.) (1992), Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures, Springer Science+Business Media, NY, U.S.A. https://doi.org/10.1007/978-1-4757-2166-9.
29 Li, R., Zhang, J., Hou, S., Qian, Z., Shen, Z., Zhao, X. and Xue, Z. (2007), "A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration", Chem. Phys., 336(2-3), 127-135. https://doi.org/10.1016/j.chemphys.2007.06.011.   DOI
30 Lee, Y.K., Choi, H., Lee, H., Lee, C., Choi, J.S., Choi, C.-G., Hwang, E. and Park, J.Y. (2016), "Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes", Scientific Reports, 6(1), 27549. https://doi.org/10.1038/srep27549.   DOI
31 Lan, Y., Xia L.-X., Huang, T., Xu, W., Huang, G.-F., Hu, W. and Huang, W.-Q. (2020), "Strain and electric field controllable Schottky Barriers and contact types in Graphene-MoTe2 van der Waals Heterostructure", Nanosc. Res. Lett., 15(1), 180. https://doi.org/10.1186/s11671-020-03409-7.   DOI
32 Sergeyev, D. and Zhanturina, N. (2019), "Simulation of electrical characteristics of switching nanostructures "Pt - TiO - Pt" and "Pt - NiO - Pt" with memory", Radioengeeniring, 28(4), 714-720. https://doi.org/10.13164/re.2019.0714.   DOI
33 Kiguchi, M. (Ed.) (2016), Single-Molecule Electronics: An Introduction to Synthesis, Measurement and Theory, Springer Science+Business Media, Singapore. https://doi.org/10.1007/978-981-10-0724-8.
34 Pomorski, P., Pastewka, L., Roland, C., Guo, H. and Wang, J. (2004), "Capacitance, induced charges, and bound states of biased carbon nanotube systems", Phys. Rev. B, 69(11), 115418. https://doi.org/10.1103/PhysRevB.69.115418.   DOI
35 Schonenberger, C., van Houten, H. and Beenakker, C.W.J. (1993), "Polarization charge relaxation and the Coulomb staircase in ultrasmall double-barrier tunnel junctions", Physica B, 189(1-4), 218-224. https://doi.org/10.1016/0921-4526(93)90163-Z.   DOI
36 Sergeyev, D. (2020a), "Single electron transistor based on endohedral metallofullerenes Me@C60 (Me = Li, Na, K)", J. Nano-Electron. Phys., 12(3), 03017. https://doi.org/10.21272/jnep.12(3).03017.   DOI
37 Sergeyev, D. (2020b), "Features of the electrical characteristics of an octagraphene nanotube", J. Nano-Electron. Phys., 11(6), 06022. https://doi.org/10.21272/jnep.11(6).06022.
38 Sergeyev, D. (2020c), "Specific features of electron transport in a molecular nanodevice containing a nitroamine redox center", Tech. Phys., 65(4), 573-577. https://doi.org/10.1134/S1063784220040180.   DOI
39 Perdew, J.P., Burke, K. and Ernzerhof, M. (1996), "Generalized gradient approximation made simple", Phys. Rev. Lett., 77(18), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865.   DOI
40 Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A. and Vej-Hansen, U.G. (2020), "QuantumATK: An integrated platform of electronic and atomic-scale modelling tools", J. Phys.: Condens. Matter., 32(1), 015901. https://doi.org/10.1088/1361-648X/ab4007.   DOI
41 Sergeyev, D. and Shunkeyev, K. (2018), "Investigation of transport parameters of graphene-based nanostructures", Russ. Phys. J., 60(11), 1938-1945. https://doi.org/10.1007/s11182-018-1306-9.   DOI
42 Dragoman, M. and Dragoman, D. (2017), 2D Nanoelectronics: Physics and Devices of Atomically Thin Materials, Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-48437-2.