• Title/Summary/Keyword: nano-scale MOSFET

Search Result 38, Processing Time 0.021 seconds

New RF Empirical Nonlinear Modeling for Nano-Scale Bulk MOSFET (나노 스케일 벌크 MOSFET을 위한 새로운 RF 엠피리컬 비선형 모델링)

  • Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.33-39
    • /
    • 2006
  • An empirical nonlinear model with intrinsic nonlinear elements has been newly developed to predict the RF nonlinear characteristics of nano-scale bulk MOSFET accurately over the wide bias range. Using an extraction method suitable for nano-scale MOSFET, the bias-dependent data of intrinsic model parameters have been accurately obtained from measured S-parameters. The intrinsic nonlinear capacitance and drain current equations have been empirically obtained through 3-dimensional curve-fitting to their bias-dependent curves. The modeled S-parameters of 60nm MOSFET have good agreements with measured ones up to 20GHz in the wide bias range, verifying the accuracy of the nano-scale MOSFET model.

Gate-Length Dependent Cutoff Frequency Extraction for Nano-Scale MOSFET (Nano-Scale MOSFET의 게이트길이 종속 차단주파수 추출)

  • Kim, Joung-Hyck;Lee, Yong-Taek;Choi, Mun-Sung;Ku, Ja-Nam;Lee, Seong-Heam
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.1-8
    • /
    • 2005
  • The gate length-dependence of cutoff frequency is modeled by using scaling parameter equations of equivalent circuit parameters extracted from measured S-parameters of Nano-scale MOSFETs. It is observed that the modeled cutoff frequency initially increases with decreasing gate length and then the rate of increase becomes degraded at further scale-down. This is because the extrinsic charging time slightly decreases, although the intrinsic transit time greatly decreases with gate length reduction. The new gate length-dependent model will be very helpful to optimize RF performances of Nano-scale MOSFETs.

PMOSFET Hot Carrier Lifetime Dominated by Hot Hole Injection and Enhanced PMOSFET Degradation than NMOSFET in Nano-Scale CMOSFET Technology (PMOSFET에서 Hot Carrier Lifetime은 Hole injection에 의해 지배적이며, Nano-Scale CMOSFET에서의 NMOSFET에 비해 강화된 PMOSFET 열화 관찰)

  • 나준희;최서윤;김용구;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.21-29
    • /
    • 2004
  • Hot carrier degradation characteristics of Nano-scale CMOSFETs with dual gate oxide have been analyzed in depth. It is shown that, PMOSFET lifetime dominate the device lifetime than NMOSFET In Nano-scale CMOSFETs, that is, PMOSFET lifetime under CHC (Channel Hot Carrier) stress is much lower than NMOSFET lifetime under DAHC (Dram Avalanche Hot Carrier) stress. (In case of thin MOSFET, CHC stress showed severe degradation than DAHC for PMOSFET and DAHC than CHC for NMOSFET as well known.) Therefore, the interface trap generation due to enhanced hot hole injection will become a dominant degradation factor in upcoming Nano-scale CMOSFET technology. In case of PMOSFETs, CHC shows enhanced degradation than DAHC regardless of thin and thick PMOSFETs. However, what is important is that hot hole injection rather than hot electron injection play a important role in PMOSFET degradation i.e. threshold voltage increases and saturation drain current decreases due to the hot carrier stresses for both thin and thick PMOSFET. In case of thick MOSFET, the degradation by hot carrier is confirmed using charge pumping current method. Therefore, suppression of PMOSFET hot carrier degradation or hot hole injection is highly necessary to enhance overall device lifetime or circuit lifetime in Nano-scale CMOSFET technology

Analysis of Effective Gate resistance characteristics in Nano-scale MOSFET for RFIC (RFIC를 위한 Nano-scale MOSFET의 Effective gate resistance 특성 분석)

  • 윤형선;임수;안정호;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.1-6
    • /
    • 2004
  • Effective gate resistance, extracted by direct extraction method, is analyzed among various gate length, in nanoscale MOSFET for RFIC. Extracted effective gate resistance is compared to measured data and verified with simplified model. Extracted parameters are accurate to 10GHz. In the same process technology effect has a different kind of gate voltage dependency and frequency dependency compared with general effective gate resistance. Particularly, the characteristic of effective gate resistance before and after threshold voltage is noticeable. When gate voltage is about threshold voltage, effective gate resistance is abnormally high. This characteristic will be an important reference for RF MOSFET modeling using direct extraction method.

Scaling theory to minimize the roll-off of threshold voltage for nano scale MOSFET (나노 구조 MOSFET의 문턱전압 변화를 최소화하기 위한 스케일링 이론)

  • 김영동;김재홍;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we have presented the simulation results about threshold voltage of nano scale lightly doped drain (LDD) MOSFET with halo doping profile. Device size is scaled down from 100nm to 40nm using generalized scaling. We have investigated the threshold voltage for constant field scaling and constant voltage scaling using the Van Dort Quantum Correction Model(QM) and direct tunneling current for each gate oxide thickness. We know that threshold voltage is decreasing in the constant field scaling and increasing in the constant voltage scaling when gate length is reducing, and direct tunneling current is increasing when gate oxide thickness is reducing. To minimize the roll-off characteristics for threshold voltage of MOSFET with decreasing channel length, we know u value must be nearly 1 in the generalized scaling.

  • PDF

70nm NMOSFET fabrication with ultra-shallow n+-p junctions using low energy As<+>(2) implantations (낮은 에너지의 As<+>(2) 이온 주입을 이용한 얕은 n+-p 접합을 가진 70nm NMOSFET의 제작)

  • Lee, Jong Deok;Lee, Byeong Guk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.9-9
    • /
    • 2001
  • Nano-scale의 게이트 길이를 가지는 MOSFET소자는 접합 깊이가 20∼30㎚정도로 매우 얕은 소스/드레인 확장 영역을 필요로 한다. 본 연구에서는 $As₂^ +$ 이온의 10keV이하의 낮은 에너지 이온 주입과 RTA(rapid thermal annealing)공정을 적용하여 20㎚이하의 얕은 접합 깊이와 1.O㏀/□ 이하의 낮은 면저항 값을 가지는 $n ^+$-p접합을 구현 하였다. 이렇게 형성된 $n^ +$-p 접합을 nano-scale MOSFET소자 제작에 적용 시켜서 70㎚의 게이트 길이를 가지는 NMOSFET을 제작하였다. 소스/드레인 확장 영역을 $As₂^ +$ 5keV의 이온 주입으로 형성한 100㎚의 게이트 길이를 가지는 NMOSFET의 경우, 60mV의 낮은 $V_ T$(문턱 전압감소) 와 87.2㎷의 DIBL (drain induced barrier lowering) 특성을 확인하였다. $10^20$$㎝^ -3$이상의 도핑 농도를 가진 abrupt한 20㎚급의 얕은 접합, 그리고 이러한 접합이 적용된 NMOSFET소자의 전기적 특성들은 As₂/sup +/의 낮은 에너지의 이온 주입 기술이 nano-scale NMOSFET소자 제작에 적용될 수 있다는 것을 제시한다.

A Study on the Subthreshold Swing for Double Gate MOSFET (더블게이트 MOSFET의 서브문턱스윙에 대한 연구)

  • Jung, Hak-Kee;Dimitrijev, Sima
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.804-810
    • /
    • 2005
  • An analytical subthreshold swing (SS) model has been presented for double gate MOSFET(DGMOSFET) in this study. The results calculated by this model are more precise for about 10nm channel length and thickness than those derived from the previous models. The results of this model are compared with Medici simulation to varify the validity of this model, and good agreementes have been obtained. The changes of SS have been investigated for various channel lengths, channel thicknesses and gate oxide thicknesses using this model, given that these parameters are very important in design of DGMOSFET. This demonstrates that the proposed model provides useful data for design of nano-scale DGMOSFET. It is Known that the SS is improved to smaller ratios of channel thickness vs channel length and is smaller in very thin oxides. New gate dielectric materials with high permittivity have to be developed to enable design of nano-scale DGMOSFET.

Separation and Quantification of Parasitic Resistance in Nano-scale Silicon MOSFET

  • Lee Jun-Ha;Lee Hoong-Joo;Song Young-Jin;Yoon Young-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.2
    • /
    • pp.49-53
    • /
    • 2005
  • The current drive in a MOSFET is limited by the intrinsic channel resistance. All other parasitic elements in a device structure perform significant functions leading to degradation in the device performance. These other resistances must be less than 10$\%$-20$\%$ of the channel resistance. To meet the necessary requirements, the methodology of separation and quantification of those resistances should be investigated. In this paper, we developed an extraction method for the resistances using calibrated TCAD simulation. The resistance of the extension region is also partially determined by the formation of a surface accumulation region that gathers below the gate in the tail region of the extension profile. This resistance is strongly affected by the abruptness of the extension profile because the steeper the profile is, the shorter this accumulation region will be.

A Study on Contact Resistance of the Nano-Scale MOSFET (Nano-Scale MOSFET 소자의 Contact Resistance에 대한 연구)

  • 이준하;이흥주
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.13-15
    • /
    • 2004
  • The current driven in an MOSFET is limited by the intrinsic channel resistance. All the other parasitic elements in a device structure play a significant role and degrade the device performance. These other resistances need to be less than 15% of the channel resistance. To achieve the requirements, we should investigate the methodology of separation and quantification of those resistances. In this paper, we developed the extraction method of resistances using calibrated TCAD simulation. The resistance of the extension region is also partially determined by the formation of a surface accumulation region that forms under the gate in the tail region of the extension profile. This resistance is strongly affected by the abruptness of the extension profile because the steeper the profile is, the shorter this accumulation region will be.

  • PDF

70nm NMOSFET Fabrication with Ultra-shallow $n^{+}-{p}$ Junctions Using Low Energy $As_{2}^{+}$ Implantations (낮은 에너지의 $As_{2}^{+}$ 이온 주입을 이용한 얕은 $n^{+}-{p}$ 접합을 가진 70nm NMOSFET의 제작)

  • Choe, Byeong-Yong;Seong, Seok-Gang;Lee, Jong-Deok;Park, Byeong-Guk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Nano-scale gate length MOSFET devices require extremely shallow source/drain eftension region with junction depth of 20∼30nm. In this work, 20nm $n^{+}$-p junctions that are realized by using this $As_{2}^{+}$ low energy ($\leq$10keV) implantation show the lower sheet resistance of the $1.0k\Omega$/$\square$ after rapid thermal annealing process. The $As_{2}^{+}$ implantation and RTA process make it possible to fabricate the nano-scale NMOSFET of gate length of 70nm. $As_{2}^{+}$ 5 keV NMOSFET shows a small threshold voltage roll-off of 60mV and a DIBL effect of 87.2mV at 100nm gate length devices. The electrical characteristics of the fabricated devices with the heavily doped and abrupt $n^{+}$-p junctions ($N_{D}$$10^{20}$$cm^{-3}$, $X_{j}$$\leq$20nm) suggest the feasibility of the nano-scale NMOSFET device fabrication using the $As_{2}^{+}$ low energy ion implantation.

  • PDF