• 제목/요약/키워드: n-channel MOSFETs

검색결과 63건 처리시간 0.025초

상온에서 짧은 채널 n-MOSFET의 이동도 감쇠 변수 추추에 관한 연구 (A Study on the Extraction of Mobility Reduction Parameters in Short Channel n-MOSFETs at Room Temperature)

  • 이명복;이정일;강광남
    • 대한전자공학회논문지
    • /
    • 제26권9호
    • /
    • pp.1375-1380
    • /
    • 1989
  • Mobility reduction parameters are extracted using a method based on the exploitatiion of Id-Vg and Gm-Vg characteristics of short channel n-MOSFETs in strong inversion region at room temperature. It is found that the reduction of the maximum field effect mobility, \ulcornerFE,max, with the channel length is due to i) the difference between the threshold voltage and the gate voltage which corresponds to the maximum transconductance, and ii) the channel length dependence of the mobility attenuation coefficient, \ulcorner The low field mobility, \ulcorner, is found to be independent of the channel length down to 0.25 \ulcorner ofeffective channel length. Also, the channel length reduction, -I, the mobility attenuation coefficient, \ulcorner the threshold voltage, Vt, and the source-drain resistance, Rsd, are determined from the Id-Vg and -gm-Vg characteristics n-MOSFETs.

  • PDF

A Design Evaluation of Strained Si-SiGe on Insulator (SSOI) Based Sub-50 nm nMOSFETs

  • Nawaz, Muhammad;Ostling, Mikael
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권2호
    • /
    • pp.136-147
    • /
    • 2005
  • A theoretical design evaluation based on a hydrodynamic transport simulation of strained Si-SiGe on insulator (SSOI) type nMOSFETs is reported. Although, the net performance improvement is quite limited by the short channel effects, simulation results clearly show that the strained Si-SiGe type nMOSFETs are well-suited for gate lengths down to 20 nm. Simulation results show that the improvement in the transconductance with decreasing gate length is limited by the long-range Coulomb scattering. An influence of lateral and vertical diffusion of shallow dopants in the source/drain extension regions on the device performance (i.e., threshold voltage shift, subthreshold slope, current drivability and transconductance) is quantitatively assessed. An optimum layer thickness ($t_{si}$ of 5 and $t_{sg}$ of 10 nm) with shallow Junction depth (5-10 nm) and controlled lateral diffusion with steep doping gradient is needed to realize the sub-50 nm gate strained Si-SiGe type nMOSFETs.

Strained-SiGe Complementary MOSFETs Adopting Different Thicknesses of Silicon Cap Layers for Low Power and High Performance Applications

  • Mheen, Bong-Ki;Song, Young-Joo;Kang, Jin-Young;Hong, Song-Cheol
    • ETRI Journal
    • /
    • 제27권4호
    • /
    • pp.439-445
    • /
    • 2005
  • We introduce a strained-SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si-cap layers in n-channel and p-channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high-electron-mobility Si surface channel in nMOSFETs and a compressively strained high-hole-mobility $Si_{0.8}Ge_{0.2}$ buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate-leakage levels. Unlike the conventional strained-Si CMOS employing a relatively thick (typically > 2 ${\mu}m$) $Si_xGe_{1-x}$ relaxed buffer layer, the strained-SiGe CMOS with a very thin (20 nm) $Si_{0.8}Ge_{0.2}$ layer in this study showed a negligible self-heating problem. Consequently, the proposed strained-SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.

  • PDF

A Study of the Dependence of Effective Schottky Barrier Height in Ni Silicide/n-Si on the Thickness of the Antimony Interlayer for High Performance n-channel MOSFETs

  • Lee, Horyeong;Li, Meng;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권1호
    • /
    • pp.41-47
    • /
    • 2015
  • In this paper, the effective electron Schottky barrier height (${\Phi}_{Bn}$) of the Ni silicide/n-silicon (100) interface was studied in accordance with different thicknesses of the antimony (Sb) interlayer for high performance n-channel MOSFETs. The Sb interlayers, varying its thickness from 2 nm to 10 nm, were deposited by radio frequency (RF) sputtering on lightly doped n-type Si (100), followed by the in situ deposition of Ni/TiN (15/10 nm). It is found that the sample with a thicker Sb interlayer shows stronger ohmic characteristics than the control sample without the Sb interlayer. These results show that the effective ${\Phi}_{Bn}$ is considerably lowered by the influence of the Sb interlayer. However, the current level difference between Schottky diodes fabricated with Sb/Ni/TiN (8/15/10 nm) and Sb/Ni/TiN (10/15/10 nm) structures is almost same. Therefore, considering the process time and cost, it can be said that the optimal thickness of the Sb interlayer is 8 nm. The effective ${\Phi}_{Bn}$ of 0.076 eV was achieved for the Schottky diode with Sb/Ni/TiN (8/15/10 nm) structure. Therefore, this technology is suitable for high performance n-channel MOSFETs.

STI구조를 갖는 nMOSFET의 채널 너비에 따른 Hot-Carrier 열화 현상에 관한 연구 (A Study on the Channel-Width Dependent Hot-Carrier Degradation of nMOSFET with STI)

  • 이성원;신형순
    • 대한전자공학회논문지SD
    • /
    • 제40권9호
    • /
    • pp.638-643
    • /
    • 2003
  • Channel width dependence of hot-carrier effect in nMOSFET with shallow trench isolation is analyzed. $I_{sub}$- $V_{G}$ and $\Delta$ $I_{ㅇ}$ measurement data show that MOSFETs with narrow channel-width are more susceptible to the hot-carrier degradation than MOSFETs with wide channel-width. By analysing $I_{sub}$/ $I_{D}$, linear $I_{D}$- $V_{G}$ characteristics, thicker oxide-thickness at the STI edge is identified as the reason for the channel-width dependent hot-carrier degradation. Using the charge-pumping method, $N_{it}$ generation due to the drain avalanche hot-carrier (DAHC) and channel hot-electron (CHE) stress are compared. are compared.

2D Transconductance to Drain Current Ratio Modeling of Dual Material Surrounding Gate Nanoscale SOl MOSFETs

  • Balamurugan, N.B.;Sankaranarayanan, K.;John, M.Fathima
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제9권2호
    • /
    • pp.110-116
    • /
    • 2009
  • The prominent advantages of Dual Material Surrounding Gate (DMSG) MOSFETs are higher speed, higher current drive, lower power consumption, enhanced short channel immunity and increased packing density, thus promising new opportunities for scaling and advanced design. In this Paper, we present Transconductance-to-drain current ratio and electric field distribution model for dual material surrounding gate (DMSGTs) MOSFETs. Transconductance-to-drain current ratio is a better criterion to access the performance of a device than the transconductance. This proposed model offers the basic designing guidance for dual material surrounding gate MOSFETs.

Sub-micron 규모의 메몰 채널(buried-channel)P-MOSFETs에서의 핫-캐리어 현상 (Hot-carrier effects in sub-micron scaled buried-channel P-MOSFETs)

  • 정윤호;김종환;노병규;오환술;조용범
    • 전자공학회논문지A
    • /
    • 제33A권10호
    • /
    • pp.130-138
    • /
    • 1996
  • The size of a device needs to scale down to increase its integrity and speed. As the size of the device is reduced, the hot-carrier degradation that severely effects on device reliabilty is concerned. In this paper, sub-micron buried-channel P-MOSFETs were fabircated, and the hot-carrier effects were invetigated. Also the hot-carrier effect in the buired-channel P-MOSFETs and the surface-channel P-MOSFETs were compared with simulation programs using SUPREM-4 and MINIMOS-4. This paper showed that the electric characteristics of sub-micron P-MOSFET are different from those of N-MOSFET. Also it showed that the punchthrough voltage ( $V_{pt}$ ) was abruptly drop after applying the stress and became almost 0V when the channel lengths were shorter than 0.6.mu.m. The lower punchthrough voltage causes the device to operte poorly by the deterioration of cut-off characteries in the switching mode. We can conclude that the buried channel P-MOSFET for CMOS circuits has a limit of the channel length to be around 0.6.mu.m.

  • PDF

Shallow Trench Isolation 공정에서 수분에 의한 nMOSFET의 Hump 특성 (Moisture Induced Hump Characteristics of Shallow Trench-Isolated nMOSFET)

  • 이영철
    • 한국정보통신학회논문지
    • /
    • 제10권12호
    • /
    • pp.2258-2263
    • /
    • 2006
  • 본 논문은 shallow trench isolation (STI) 공정에서 ILD (inter-layer dielectric) 막의 수분에 의해 야기되는 단 채널 (short-channel) nMOSFET의 hump 특성의 원인을 분석하고 억제 방법을 제안하였다. 다양한 게이트를 가지는 소자와 TDS-APIMS(Thermal Desorption System-Atmospheric Pressure Ionization Mass Spectrometry) 측정을 이용하여 hump 특성을 체계적으로 분석하였고, 분석을 바탕으로 단 채널 hump모델을 제안하였다. 제안된 모델에 의한 단 채널 nMOSFET의 hump 현상은 poly-Si 게이트 위의 ILD 막의 수분이 상부의 SiN 막에 의해 밖으로 확산되지 못하고 게이트와 STI의 경계면으로 확산하여 발생한 것이 며, 이를 개선하기 위해 상부의 SiN 막의 증착 전 열공정을 통해 ILD 막의 수분을 효과적으로 배출시킴으로써 hump 특성을 성공적으로 억제하였다.

Some Device Design Considerations to Enhance the Performance of DG-MOSFETs

  • Mohapatra, S.K.;Pradhan, K.P.;Sahu, P.K.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권6호
    • /
    • pp.291-294
    • /
    • 2013
  • When subjected to a change in dimensions, the device performance decreases. Multi-gate SOI devices, viz. the Double Gate MOSFET (DG-MOSFET), are expected to make inroads into integrated circuit applications previously dominated exclusively by planar MOSFETs. The primary focus of attention is how channel engineering (i.e. Graded Channel (GC)) and gate engineering (i.e. Dual Insulator (DI)) as gate oxide) creates an effect on the device performance, specifically, leakage current ($I_{off}$), on current ($I_{on}$), and DIBL. This study examines the performance of the devices, by virtue of a simulation analysis, in conjunction with N-channel DG-MOSFETs. The important parameters for improvement in circuit speed and power consumption are discussed. From the analysis, DG-DI MOSFET is the most suitable candidate for high speed switching application, simultaneously providing better performance as an amplifier.

Si-기반 나노채널 MOSFET의 문턱전압에 관한 분석 (Investigation of Threshold Voltage in Si-Based MOSFET with Nano-Channel Length)

  • 정정수;장광균;심성택;정학기;이종인
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.317-320
    • /
    • 2001
  • 본 논문에서는 Si-기반 나노채널 nMOSFET의 문턱전압에 관하여 분석하였다. 본 논문에서 연구된 소자는 180nm의 n-채널 MOSFET을 기준으로 30 nm까지의 게이트 길이를 가진 소사를 정전압 스켈링 이론에 따라 스켈링하였다. 이들 소자들은 드레인 영역에서의 전계크기 감소와 단채널 효과를 줄이기 위해 LDD(lightly doped drain) 구조를 사용하였으며 이들 소자의 문턱전압을 조사ㆍ분석하였다. 이러한 해석은 IC응용의 한계에 대한 분석을 제공할 것이며 VLSI의 기본 데이터로 활용될 수 있을 것이다.

  • PDF