• Title/Summary/Keyword: n-channel MOSFETs

Search Result 63, Processing Time 0.027 seconds

A Study on the Extraction of Mobility Reduction Parameters in Short Channel n-MOSFETs at Room Temperature (상온에서 짧은 채널 n-MOSFET의 이동도 감쇠 변수 추추에 관한 연구)

  • 이명복;이정일;강광남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1375-1380
    • /
    • 1989
  • Mobility reduction parameters are extracted using a method based on the exploitatiion of Id-Vg and Gm-Vg characteristics of short channel n-MOSFETs in strong inversion region at room temperature. It is found that the reduction of the maximum field effect mobility, \ulcornerFE,max, with the channel length is due to i) the difference between the threshold voltage and the gate voltage which corresponds to the maximum transconductance, and ii) the channel length dependence of the mobility attenuation coefficient, \ulcorner The low field mobility, \ulcorner, is found to be independent of the channel length down to 0.25 \ulcorner ofeffective channel length. Also, the channel length reduction, -I, the mobility attenuation coefficient, \ulcorner the threshold voltage, Vt, and the source-drain resistance, Rsd, are determined from the Id-Vg and -gm-Vg characteristics n-MOSFETs.

  • PDF

A Design Evaluation of Strained Si-SiGe on Insulator (SSOI) Based Sub-50 nm nMOSFETs

  • Nawaz, Muhammad;Ostling, Mikael
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.136-147
    • /
    • 2005
  • A theoretical design evaluation based on a hydrodynamic transport simulation of strained Si-SiGe on insulator (SSOI) type nMOSFETs is reported. Although, the net performance improvement is quite limited by the short channel effects, simulation results clearly show that the strained Si-SiGe type nMOSFETs are well-suited for gate lengths down to 20 nm. Simulation results show that the improvement in the transconductance with decreasing gate length is limited by the long-range Coulomb scattering. An influence of lateral and vertical diffusion of shallow dopants in the source/drain extension regions on the device performance (i.e., threshold voltage shift, subthreshold slope, current drivability and transconductance) is quantitatively assessed. An optimum layer thickness ($t_{si}$ of 5 and $t_{sg}$ of 10 nm) with shallow Junction depth (5-10 nm) and controlled lateral diffusion with steep doping gradient is needed to realize the sub-50 nm gate strained Si-SiGe type nMOSFETs.

Strained-SiGe Complementary MOSFETs Adopting Different Thicknesses of Silicon Cap Layers for Low Power and High Performance Applications

  • Mheen, Bong-Ki;Song, Young-Joo;Kang, Jin-Young;Hong, Song-Cheol
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.439-445
    • /
    • 2005
  • We introduce a strained-SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si-cap layers in n-channel and p-channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high-electron-mobility Si surface channel in nMOSFETs and a compressively strained high-hole-mobility $Si_{0.8}Ge_{0.2}$ buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate-leakage levels. Unlike the conventional strained-Si CMOS employing a relatively thick (typically > 2 ${\mu}m$) $Si_xGe_{1-x}$ relaxed buffer layer, the strained-SiGe CMOS with a very thin (20 nm) $Si_{0.8}Ge_{0.2}$ layer in this study showed a negligible self-heating problem. Consequently, the proposed strained-SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.

  • PDF

A Study of the Dependence of Effective Schottky Barrier Height in Ni Silicide/n-Si on the Thickness of the Antimony Interlayer for High Performance n-channel MOSFETs

  • Lee, Horyeong;Li, Meng;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2015
  • In this paper, the effective electron Schottky barrier height (${\Phi}_{Bn}$) of the Ni silicide/n-silicon (100) interface was studied in accordance with different thicknesses of the antimony (Sb) interlayer for high performance n-channel MOSFETs. The Sb interlayers, varying its thickness from 2 nm to 10 nm, were deposited by radio frequency (RF) sputtering on lightly doped n-type Si (100), followed by the in situ deposition of Ni/TiN (15/10 nm). It is found that the sample with a thicker Sb interlayer shows stronger ohmic characteristics than the control sample without the Sb interlayer. These results show that the effective ${\Phi}_{Bn}$ is considerably lowered by the influence of the Sb interlayer. However, the current level difference between Schottky diodes fabricated with Sb/Ni/TiN (8/15/10 nm) and Sb/Ni/TiN (10/15/10 nm) structures is almost same. Therefore, considering the process time and cost, it can be said that the optimal thickness of the Sb interlayer is 8 nm. The effective ${\Phi}_{Bn}$ of 0.076 eV was achieved for the Schottky diode with Sb/Ni/TiN (8/15/10 nm) structure. Therefore, this technology is suitable for high performance n-channel MOSFETs.

A Study on the Channel-Width Dependent Hot-Carrier Degradation of nMOSFET with STI (STI구조를 갖는 nMOSFET의 채널 너비에 따른 Hot-Carrier 열화 현상에 관한 연구)

  • 이성원;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.638-643
    • /
    • 2003
  • Channel width dependence of hot-carrier effect in nMOSFET with shallow trench isolation is analyzed. $I_{sub}$- $V_{G}$ and $\Delta$ $I_{ㅇ}$ measurement data show that MOSFETs with narrow channel-width are more susceptible to the hot-carrier degradation than MOSFETs with wide channel-width. By analysing $I_{sub}$/ $I_{D}$, linear $I_{D}$- $V_{G}$ characteristics, thicker oxide-thickness at the STI edge is identified as the reason for the channel-width dependent hot-carrier degradation. Using the charge-pumping method, $N_{it}$ generation due to the drain avalanche hot-carrier (DAHC) and channel hot-electron (CHE) stress are compared. are compared.

2D Transconductance to Drain Current Ratio Modeling of Dual Material Surrounding Gate Nanoscale SOl MOSFETs

  • Balamurugan, N.B.;Sankaranarayanan, K.;John, M.Fathima
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.110-116
    • /
    • 2009
  • The prominent advantages of Dual Material Surrounding Gate (DMSG) MOSFETs are higher speed, higher current drive, lower power consumption, enhanced short channel immunity and increased packing density, thus promising new opportunities for scaling and advanced design. In this Paper, we present Transconductance-to-drain current ratio and electric field distribution model for dual material surrounding gate (DMSGTs) MOSFETs. Transconductance-to-drain current ratio is a better criterion to access the performance of a device than the transconductance. This proposed model offers the basic designing guidance for dual material surrounding gate MOSFETs.

Hot-carrier effects in sub-micron scaled buried-channel P-MOSFETs (Sub-micron 규모의 메몰 채널(buried-channel)P-MOSFETs에서의 핫-캐리어 현상)

  • 정윤호;김종환;노병규;오환술;조용범
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.130-138
    • /
    • 1996
  • The size of a device needs to scale down to increase its integrity and speed. As the size of the device is reduced, the hot-carrier degradation that severely effects on device reliabilty is concerned. In this paper, sub-micron buried-channel P-MOSFETs were fabircated, and the hot-carrier effects were invetigated. Also the hot-carrier effect in the buired-channel P-MOSFETs and the surface-channel P-MOSFETs were compared with simulation programs using SUPREM-4 and MINIMOS-4. This paper showed that the electric characteristics of sub-micron P-MOSFET are different from those of N-MOSFET. Also it showed that the punchthrough voltage ( $V_{pt}$ ) was abruptly drop after applying the stress and became almost 0V when the channel lengths were shorter than 0.6.mu.m. The lower punchthrough voltage causes the device to operte poorly by the deterioration of cut-off characteries in the switching mode. We can conclude that the buried channel P-MOSFET for CMOS circuits has a limit of the channel length to be around 0.6.mu.m.

  • PDF

Moisture Induced Hump Characteristics of Shallow Trench-Isolated nMOSFET (Shallow Trench Isolation 공정에서 수분에 의한 nMOSFET의 Hump 특성)

  • Lee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2258-2263
    • /
    • 2006
  • In this parer, hump characteristics of short-channel nMOSFETs induced by moistures of the ILD(inter-layer dielectric) layer in the shallow trench isolation (STI) process are investigated and the method for hump suppression is proposed Using nMOSFETs with various types of the gate and a measurement of TDS-APIMS (Thermal Desorption System-Atmospheric Pressure ionization Mass Spectrometry), hump characteristics were systematically analyzed and the systemic analysis based hump model was presented; the ILD layer over poly-Si gate of nMOSFET generates moistures, but they can't diffuse out of the SiN layer due to the upper SiN layer. Consequently, they diffuses into the edge between the gate and STI and induces short-channel hump. In order to eliminate moisture in the ILD layer by out-gassing method, the annealing process prior to the deposition of the SiN layer was carried out. As the result, short-channel humps of the nMOSFETs were successfully suppressed.

Some Device Design Considerations to Enhance the Performance of DG-MOSFETs

  • Mohapatra, S.K.;Pradhan, K.P.;Sahu, P.K.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.291-294
    • /
    • 2013
  • When subjected to a change in dimensions, the device performance decreases. Multi-gate SOI devices, viz. the Double Gate MOSFET (DG-MOSFET), are expected to make inroads into integrated circuit applications previously dominated exclusively by planar MOSFETs. The primary focus of attention is how channel engineering (i.e. Graded Channel (GC)) and gate engineering (i.e. Dual Insulator (DI)) as gate oxide) creates an effect on the device performance, specifically, leakage current ($I_{off}$), on current ($I_{on}$), and DIBL. This study examines the performance of the devices, by virtue of a simulation analysis, in conjunction with N-channel DG-MOSFETs. The important parameters for improvement in circuit speed and power consumption are discussed. From the analysis, DG-DI MOSFET is the most suitable candidate for high speed switching application, simultaneously providing better performance as an amplifier.

Investigation of Threshold Voltage in Si-Based MOSFET with Nano-Channel Length (Si-기반 나노채널 MOSFET의 문턱전압에 관한 분석)

  • 정정수;장광균;심성택;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.317-320
    • /
    • 2001
  • In this paper, we have presented the simulation results about threshold voltage at Si-based MOSFETs with channel length of nano scale. We simulated the Si-based n-channel MOSFETS with sate lengthes from 180 to 30 nm in accordance to constant voltage scaling theory. These MOSFETs had the lightly doped drain(LDD) structure, which is used for the reduction of electric field magnitude and short channel effects at the drain region. The stronger electric field at this region it due to scaling down. We investigated and analysed the threshold voltage of these devices. This analysis will provide insight into some applicable limitations at the ICs and used for basis data at VLSI.

  • PDF