• Title/Summary/Keyword: n-MOSFET

Search Result 355, Processing Time 0.705 seconds

Analysis and extraction method of noise parameters for short channel MOSFET thermal noise modeling (단채널 MOSFET의 열잡음 모델링을 위한 잡음 파라메터의 분석과 추출방법)

  • Kim, Gue-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2655-2661
    • /
    • 2009
  • In this paper, an accurate noise parameters for thermal noise modeling of short channel MOSFET is derived and extracted. Fukui model for calculating the noise parameters of a MOSFET is modified by considering effects of parasitic elements in short channel, and it is compared with conventional noise model equation. In addition, for obtaining the intrinsic noise sources of devices, noise parameters(minimum noise figure $F_{min}$, equivalent noise resistance $R_n$ optimized source admittance $Y_{opt}=G_{opt}+B_{opt}$) in submicron MOSFETs is extracted. With this extraction method, the intrinsic noise parameters of MOSFET without effects of probe pad and extrinsic parasitic elements from RF noise measurements can be directly obtained.

Analysis of Radiation Effects in CMOS 0.18um Process Unit Devices (CMOS 0.18um 공정 단위소자의 방사선 영향 분석)

  • Jeong, Sang-Hun;Lee, Nam-Ho;Lee, Min-Woong;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.540-544
    • /
    • 2017
  • In this study, we analyzed the effects of TID(Total Ionizing Dese) and TREE(Transient Radiation Effects on Electronics) on nMOSFET and pMOSFET fabricated by 0.18um CMOS process. The size of nMOSFET and pMOSFET is 100um/1um(W/L). The TID test was conducted up to 1 Mrad(Si) with a gamma-ray(Co-60). During the TID test, the nMOSFET generated leakage current proportional to the applied dose, but that of the pMOSFET was remained in a steady state. The TREE test was conducted at TEST LINAC in Pohang Accelerator Laboratory with a maximum dose-rate of $3.16{\times}10^8rad(si)/s$. In that test nMOESFET generated a large amount of photocurrent at a maximum of $3.16{\times}10^8rad(si)/s$. Whereas, pMOSFETs showed high TREE immunity with a little amount of photocurrent at the same dose rate. Based on the results of this experiment, we will progress the research of the radiation hardening for CMOS unit devices.

Implementation of a Radiation-hardened I-gate n-MOSFET and Analysis of its TID(Total Ionizing Dose) Effects

  • Lee, Min-Woong;Lee, Nam-Ho;Jeong, Sang-Hun;Kim, Sung-Mi;Cho, Seong-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1619-1626
    • /
    • 2017
  • Electronic components that are used in high-level radiation environment require a semiconductor device having a radiation-hardened characteristic. In this paper, we proposed a radiation-hardened I-gate n-MOSFET (n-type Metal Oxide Semiconductors Field Effect Transistors) using a layout modification technique only. The proposed I-gate n-MOSFET structure is modified as an I-shaped gate poly in order to mitigate a radiation-induced leakage current in the standard n-MOSFET structure. For verification of its radiation-hardened characteristic, the M&S (Modeling and Simulation) of the 3D (3-Dimension) structure is performed by TCAD (Technology Computer Aided Design) tool. In addition, we carried out an evaluation test using a $Co^{60}$ gamma-ray source of 10kGy(Si)/h. As a result, we have confirmed the radiation-hardened level up to a total ionizing dose of 20kGy(Si).

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.

Metal Plasma-Etching Damages of NMOSFETs with Pure and $N{_2}O$ Gate Oxides (게이트 산화막에 따른 nMOSFET의 금속 플라즈마 피해)

  • Jae-Seong Yoon;Chang-Wu Hur
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.471-475
    • /
    • 1999
  • The metal plasma-etch damage immunity of nMOSFET with $N{_2}O$ gate oxide is found to be improved comparing to that with regular pure oxide of similar thickness. With increasing the antenna ratio (AR), the characteristics of nMOSFETs with $N{_2}O$ oxide shows tighter initial distribution and smaller degradation under constant field stress, which is explained by the effect of the nitrogen at the substrate $Si/SiO_2$ interface. Also, if $N{_2}O$ gate oxide is used, the maximum allowable size of metal AAR and PAR may be increased to the much larger values. These improvements of nMOSFETs with $N{_2}O$ gate oxide are attributed to the effect of the interface hardness improved by the nitrogen included at the substrate-Si/$N{_2}O$-oxide interface.

  • PDF

Evaluation of SGOI wafer with different concentrations of Ge using pseudo-MOSFET (Pseudo-MOSFET을 이용한 SiGe-on-SOI의 Ge 농도에 따른 기판의 특성 평가 및 열처리를 이용한 전기적 특성 개선 효과)

  • Park, Goon-Ho;Jung, Jong-Wan;Cho, Won-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.156-159
    • /
    • 2008
  • The electrical characteristic of SiGe-on-SOI (SGOI) wafer with different Ge concentration were evaluated by pseudo-MOSFET. Epitaxial SiGe layers was grown directly on top of SOI with Ge concentrations of 16.2, 29.7, 34.3 and 56.5 at.%. As Ge concentration increased, leakage current increased and threshold voltage shifted from 3 V to 7 V in nMOSFET, from -7 V to -6 V in pMOSFET. The interface states between buried oxide and top of Si was significantly increased by the rapid thermal annealing (RTA) process, and so the electrical characteristic of SGOI wafer degraded. On the other hand, additional post RTA annealing (PRA) showed that it was effective in decreasing the interface states generated by RTA processes and the electrical characteristic of SGOI wafer enhanced higher than initial state.

Simulation of Miniaturized n-MOSFET based Non-Isothermal Non-Equilibrium Transport Model (디바이스 시뮬레이션 기술을 이용한 미세 n-MOSFET의 비등온 비형형장에 있어서의 특성해석)

  • Choi, Won-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.329-337
    • /
    • 2001
  • This simulator is developed for the analysis of a MOSFET based on Thermally Coupled Energy Transport Model(TCETM). The simulator has the ability to calculate not only stationary characteristics but also non - stationary characteristics of a MOSFET. It solves basic semiconductor devices equations including Possion equation, current continuity equations for electrons and holes, energy balance equation for electrons and heat flow equation, using finite difference method. The conventional semiconductor device simulation technique, based on the Drift-Diffusion Model (DDM), neglects the thermal and other energy-related properties of a miniaturized device. I, therefore, developed a simulator based on the Thermally Coupled Energy Transport Model (TCETM) which treats not only steady-state but also transient phenomena of such a small-size MOSFET. In particular, the present paper investigates the breakdown characteristics in transient conditions. As a result, we found that the breakdown voltage has been largely underestimated by the DDM in transient conditions.

  • PDF

Electrical Characteristics and Models for Asymmetric n-MOSFET′s with Irregular Source/Drain Contacts (불규칙한 소오스/드레인 금속 접촉을 갖는 비대칭 n-MOSFET의 전기적 특성 및 모델)

  • 공동욱;정환희;이재성;이용현
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.208-211
    • /
    • 1999
  • Abstract - Electrical characteristics or asymmetric n-MOSFET's with different source and drain geometry are experimently investigated using test structures having various gate width. Saturation drain current and resistance in linear region are estimated by a simple schematic model, which consists of conventional device having parasitic resistor. A comparison of experimental results of symmetric and asymmetric devices gives the parasitic resistance caused by abnormal device structure. The suggested model shows good agreement with the measured drain current for both forward- and reverse-modes.

  • PDF

Comparative Loss Analysis of Si MOSFET and GaN FET Power System (Si MOSFET vs. GaN FET Power System의 손실 분석)

  • Ahn, Jung-Hoon;Lee, Byoung-Kuk;Kim, Nam-Jun;Kim, Jong-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.190-191
    • /
    • 2013
  • 본 논문에서는 기존의 Si MOSFET을 사용한 전력시스템과 비교하여 WBG(Wide Band Gap)특성을 갖는 GaN(Gallium Nitride) FET을 사용한 전력시스템을 비교 분석한다. 대표성을 갖는 평가가 가능하도록 가장 일반적인 FB 구조를 대상으로 Si MOSFET과 GaN FET을 각각 적용하고, 다양한 기준 조건에서 효율과 전력 밀도 등 성능을 비교한다. 전체 과정은 수학적 계산 및 시뮬레이션으로 검증한다.

  • PDF

Characteristics of submicrometer n-and p-channel MOSFET's fabricated with twin-tub CMOS process (Twin-tub CMOS공정으로 제작된 서브마이크로미터 n채널 및 p채널 MOSFET의 특성)

  • 서용진;최현식;김상용;김태형;김창일;장의구
    • Electrical & Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.320-327
    • /
    • 1992
  • Twin-tub CMOS 공정에 의해 제작된 서브마이크로미터 채널길이를 갖는 n채널 및 p채널 MOSFET의 특성을 고찰하였다. n채널 및 p채널 영역에서의 불순물 프로파일과 채널 이온주입 조건에 따른 문턱전압의 의존성 및 퍼텐셜 분포를 SUPREM-II와 MINIMOS 4.0을 사용하여 시뮬레이션하였다. 문턱전압 조정을 위한 counter-doped 보론 이온주입에 의해 p채널 MOSFET는 표면에서 대략 0.15.mu.m의 깊이에서 매몰채널이 형성되었다. 각 소자의 측정 결과, 3.3[V] 구동을 위한 충분한 여유를 갖는 양호한 드레인 포화 특성과 0.2[V]이하의 문턱전압 shift를 갖는 최소화된 짧은 채널 효과, 10[V]이상의 높은 펀치쓰루 전압과 브레이크다운 전압, 낮은 subthreshold 값을 얻었다.

  • PDF