• Title/Summary/Keyword: metamorphic HEMT

Search Result 45, Processing Time 0.021 seconds

Fabrication and Characterization of $0.2\mu\textrm{m}$ InAlAs/InGaAs Metamorphic HEMT's with Inverse Step-Graded InAlAs Buffer on GaAs Substrate

  • Kim, Dae-Hyun;Kim, Sung-Won;Hong, Seong-Chul;Paek, Seung-Won;Lee, Jae-Hak;Chung, Ki-Woong;Seo, Kwang-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 2001
  • Metamorphic InAlAs/InGaAs HEMT are successfully demonstrated, exhibiting several advantages over conventional P-HEMT on GaAs and LM-HEMT on InP substrate. The strain-relaxed metamorphic structure is grown by MBE on the GaAs substrate with the inverse-step graded InAlAs metamorphic buffer. The device with 40% indium content shows the better characteristics than the device with 53% indium content. The fabricated metamorphic HEMT with $0.2\mu\textrm{m}$T-gate and 40% indium content shows the excellent DC and microwave characteristics of $V_{th}-0.65V,{\;}g_{m,max}=620{\;}mS/mm,{\;}f_T120GHZ{\;}and{\;}f_{max}=210GHZ$.

  • PDF

A High Power 60 GHz Push-Push Oscillator Using Metamorphic HEMT Technology (Metamorphic HEMT를 이 용한 60 GHz 대역 고출력 Push-Push 발진기)

  • Lee Jong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.659-664
    • /
    • 2006
  • This paper reports a high power 60 GHz push-push oscillator fabricated using $0.12{\mu}m$ metamorphic high electron-mobility transistors(mHEMTs). The devices with a $0.12{\mu}m$ gate-length exhibited good DC and RF characteristics such as a maximum drain current of 700 mA/mm, a peak gm of 660 mS/mm, an $f_T$ of 170 GHz, and an $f_{MAX}$ of more than 300 GHz. By combining two sub-oscillators having $6{\times}50{\mu}m$ periphery mHEMT, the push-push oscillator achieved a 6.3 dBm of output power at 59.5 GHz with more than - 35 dBc fundamental suppression. The phase noise of - 81.5 dBc/Hz at 1 MHz offset was measured. This is one of the highest output power obtained using mHEMT technology without buffer amplifier, and demonstrates the potential of mHEMT technology for cost effective millimeter-wave commercial applications.

Design and Fabrication of 100 GHz MIMIC Amplifier Using Metamorphic HEMT (Metamorphic HEMT를 이용한 100GHz MIMIC 증폭기의 설계 및 제작)

  • 안단;이복형;임병옥;이문교;백용현;채연식;박형무;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.25-30
    • /
    • 2004
  • In this Paper, the 0.1 w InGaAs/InAlAs/GaAs Metamorphic HEMT, which is applicable to MIMIC, and a 100 GHz MIMIC amplifier were designed and fabricated. The DC characteristics of MHEMT are 640 mA/mm of drain current density, 653 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 173 GHz and the maximum oscillation frequency(fmax) is 271 GHz. A 100 GHz amplifier was designed using 0.1${\mu}{\textrm}{m}$ MHEMT and CPW technology. The measured results from the 100 GHz MIMIC amplifiers show good S21 gain of 10.1 dB and 12.74 dB at 100 GHz and 97.8 GHz, respectively.

High Performance 50 nm Metamorphic HEMTs for Millimeter-wave Applications (밀리미터파 응용을 위한 우수한 성능의 50 nm Metamorphic HEMTs)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.116-120
    • /
    • 2012
  • We reported on a high performance InGaAs/InAlAs metamorphic HEMT with 50 nm gate length on a GaAs substrate. The fabricated $50nm{\times}60{\mu}m$ MHEMT showed good DC and RF characteristics. Typical drain current density of 740 mA/mm and extrinsic transconductance(gm) of 1.02 S/mm were obtained with our devices. The current gain cut-off frequency(fT) and maximum oscillation frequency(fmax) obtained for the fabricated MHEMT device were 430 GHz and 406 GHz, respectively.

Development of a Two-Stage High Gain D-Band MMIC Drive Amplifier Using $0.1{\mu}m$ Metamorphic HEMT Technology ($0.1{\mu}m$ Metamorphic HEMT를 이용한 고이득 D-Band MMIC 2단 구동증폭기 개발)

  • Lee, Bok-Hyung;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.41-46
    • /
    • 2008
  • We report a high gain D-band(110 - 140 GHz) MMIC drive amplifier based on $0.1{\mu}m$ InGaAs/InAlAs/GaAs metamorphic HEMT technology. The amplifier shows an excellent $S_{21}$ gain characteristic greater than 10 dB in a millimeterwave frequency of 110 GHz, Also the amplifier has good reflection characteristics of a $S_{11}$ of -3.5 dB and a $S_{22}$ of -6.5 dB at 110 GHz, respectively The high performances of the MMIC drive amplifier is mainly attributed to the characteristics of the MHEMTs exhibiting a maximum transconductance of 760 mS/mm, a current gain cut-off frequency of 195 GHz and a maximum oscillation frequency of 391 GHz.

Fabrication and Characterization of 70 nm T-gate AlGaAs/InGaAs/GaAs metamorphic HEMT Device (70 nm T-게이트를 갖는 InGaAs/InAlAs/GaAs metamorphic HEMT 소자의 제작 및 특성)

  • 김성찬;임병옥;백태종;고백석;신동훈;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.9
    • /
    • pp.19-24
    • /
    • 2004
  • In this paper, we have demonstrated the fabrication of a 70 nm foot print of the T-gate by using a positive resist ZEP520/P(MMA-MAA)/PMMA trilayer by double exposure method without a thin dielectric supporting layer on the substrate. The device performance was characterized by DC and RF measurement. The fabricated 70 nm InGaAs/InAlAs MHEMTS with 70 ${\mu}{\textrm}{m}$ unit gate width and 2 fingers showed good DC and RF characteristics of Idss, max =228.6 mA/mm, gm =645 mS/mm, and fT =255 GHz, respectively.

High-performance 94 GHz MMIC Low Noise Amplifier using Metamorphic HEMTs (Metamorphic HEMT를 이용한 우수한 성능의 94 GHz MMIC 저잡음 증폭기)

  • Kim, Sung-Chan;An, Dan;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.48-53
    • /
    • 2008
  • In this paper, we developed the MMIC low noise amplifier using 100 nm metamorphic HEMTs technology in combination with coplanar circuit topology for 94 GHz applications. The $100nm\times60{\mu}m$ MHEMT devices for the MMIC LNA exhibited DC characteristics with a drain current density of 655 mA/mm, an extrinsic transconductance of 720 mS/mm. The current gain cutoff frequency $(f_T)$ and maximum oscillation frequency $(f_{max})$ were 195 GHz and 305 GHz, respectively. The realized MMIC LNA represented $S_{21}$ gain of 14.8 dB and noise figure of 4.6 dB at 94 GHz with an over-all chip size of $1.8mm\times1.48mm$.

A D-Band Balanced Subharmonically-Pumped Resistive Mixer Based on 100-nm mHEMT Technology

  • Campos-Roca, Y.;Tessmann, A.;Massler, H.;Leuther, A.
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.818-821
    • /
    • 2011
  • A D-band subharmonically-pumped resistive mixer has been designed, processed, and experimentally tested. The circuit is based on a $180^{\circ}$ power divider structure consisting of a Lange coupler followed by a ${\lambda}$/4 transmission line (at local oscillator (LO) frequency). This monolithic microwave integrated circuit (MMIC) has been realized in coplanar waveguide technology by using an InAlAs/InGaAs-based metamorphic high electron mobility transistor process with 100-nm gate length. The MMIC achieves a measured conversion loss between 12.5 dB and 16 dB in the radio frequency bandwidth from 120 GHz to 150 GHz with 4-dBm LO drive and an intermediate frequency of 100 MHz. The input 1-dB compression point and IIP3 were simulated to be 2 dBm and 13 dBm, respectively.

Simulation Study on the DC/RF Characteristics of MHEMTs (MHEMT 소자의 DC/RF 특성에 대한 시뮬레이션 연구)

  • Son, Myung-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.345-355
    • /
    • 2011
  • GaAs-based metamorphic high electron mobility transistors (MHEMTs) and InP-based high electron mobility transistors (HEMTs) have good microwave and millimeter-wave frequency performance with lower minimum noise figure. MHEMTs have some advantages, especially for cost, compared with InP-based ones. In this paper, InAlAs/InxGa1-xAs/GaAs MHEMTs are simulated for DC/RF small-signal analysis. The hydrodynamic simulation parameters are calibrated to a fabricated 0.1-${\mu}m$ ${\Gamma}$-gate MHEMT device having the modulation-doped $In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As$ heterostructure on the GaAs substrate, and the simulations for RF small-signal characteristics are performed, compared with the measured data, and analyzed for the devices. In addition, the simulations for the DC/RF characteristics of the MHEMTs with different gate-recess structures are performed, compared and analyzed.