• Title/Summary/Keyword: mathematical proof

Search Result 546, Processing Time 0.026 seconds

The reinterpretation and the visualization of Apollonius' symptoms on conic sections (원뿔곡선에 관한 Apollonius의 Symptoms 재조명과 시각화)

  • Kim, Hyang Sook;Pak, Jin Suk;Ha, Hyoung Soo
    • The Mathematical Education
    • /
    • v.52 no.1
    • /
    • pp.83-95
    • /
    • 2013
  • The purpose of this paper is to explain and reinterprets Apollonius' Symptoms on conic sections based on the current secondary curriculum of mathematics, present the historical background of Apollonius' Symptoms to teachers and students and introduce visualization proof of Apollonius' symptoms on a parabola, a hyperbola and an ellipse by a new method using dynamic geometry software(GSP) respectively.

THE EXTENSION OF SOLUTIONS FOR THE CAUCHY PROBLEM IN THE COMPLEX DOMAIN II

  • Lee, Eun-Gu;Kim, Dohan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 1993
  • J. Leray [7] proposed a sufficient condition ofr the solvability of the Cauchy problem on the initial hyperplane x$_{1}$=0 with Cauchy data which are holomorphic with respect to the variables parallel to some analytic subvariety S of the initial hyperplane. Limiting the problem to the case of operators with constant coefficients, A. Kaneko [2] proposed a new sharper sufficient condition. Later we generalized this condition and showed that it is necessary and sufficient for the solvability of the Cauchy problem for the hyperfunction Cauchy data and the distribution Cauchy data which contain variables parallel to S as holomorphic parameters in [5, 6]. In this paper, we extend the results in [6] to the case of operators with variable coefficients and show that it is sufficient for the solvability of the Cauchy problem for the hyperfunction Cauchy data. Our main theorem can be considered as an example of a deep theorem on micro-hyperbolic systems by Kashiwara-Schapira [4] and we give a direct proof based on an elementary sweeping out procedure developed in Kaneko [3].

  • PDF

Frame Multiresolution Analysis

  • Kim, Hong-Oh;Lim, Jae-Kun
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.285-308
    • /
    • 2000
  • We generalize bi-orthogonal (non-orthogona) MRA to frame MRA in which the family of integer translates of a scaling func-tion forms a frame for the initial ladder space V0. We investigate the internal structure of frame MRA and establish the existence of a dual scaling function, and show that, unlike bi-orthogonal MRA, there ex-ists a frame MRA that has no (frame) 'wavelet'. Then we prove the existence of a dual wavelet under the assumption of the existence of a wavelet and present easy sufficient conditions for the existence of a wavelet. Finally we give a new proof of an equivalent condition for the translates of a function in L2(R) to be a frame of its closed linear span.

  • PDF

BETA-EXPANSIONS WITH PISOT BASES OVER Fq((x-1))

  • Hbaib, Mohamed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.127-133
    • /
    • 2012
  • It is well known that if the ${\beta}$-expansion of any nonnegative integer is finite, then ${\beta}$ is a Pisot or Salem number. We prove here that $\mathbb{F}_q((x^{-1}))$, the ${\beta}$-expansion of the polynomial part of ${\beta}$ is finite if and only if ${\beta}$ is a Pisot series. Consequently we give an other proof of Scheiche theorem about finiteness property in $\mathbb{F}_q((x^{-1}))$. Finally we show that if the base ${\beta}$ is a Pisot series, then there is a bound of the length of the fractional part of ${\beta}$-expansion of any polynomial P in $\mathbb{F}_q[x]$.

ON WEAK ARMENDARIZ RINGS

  • Jeon, Young-Cheol;Kim, Hong-Kee;Lee, Yang;Yoon, Jung-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.135-146
    • /
    • 2009
  • In the present note we study the properties of weak Armendariz rings, and the connections among weak Armendariz rings, Armendariz rings, reduced rings and IFP rings. We prove that a right Ore ring R is weak Armendariz if and only if so is Q, where Q is the classical right quotient ring of R. With the help of this result we can show that a semiprime right Goldie ring R is weak Armendariz if and only if R is Armendariz if and only if R is reduced if and only if R is IFP if and only if Q is a finite direct product of division rings, obtaining a simpler proof of Lee and Wong's result. In the process we construct a semiprime ring extension that is infinite dimensional, from given any semi prime ring. We next find more examples of weak Armendariz rings.

A CLASSIFICATION RESULT AND CONTACT STRUCTURES IN ORIENTED CYCLIC 3-ORBIFOLDS

  • Ganguli, Saibal
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.325-335
    • /
    • 2018
  • We prove every oriented compact cyclic 3-orbifold has a contact structure. There is another proof in the web by Daniel Herr in his uploaded thesis which depends on open book decompositions, ours is independent of that. We define overtwisted contact structures, tight contact structures and Lutz twist on oriented compact cyclic 3-orbifolds. We show that every contact structure in an oriented compact cyclic 3-orbifold contactified by our method is homotopic to an overtwisted structure with the overtwisted disc intersecting the singular locus of the orbifolds. In course of proving the above results we prove a classification result for compact oriented cyclic-3 orbifolds which has not been seen by us in literature before.

GLOBAL THEORY OF VERTICAL RECURRENT FINSLER CONNECTION

  • Soleiman, Amr
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.593-607
    • /
    • 2021
  • The aim of the present paper is to establish an intrinsic generalization of Cartan connection in Finsler geometry. This connection is called the vertical recurrent Finsler connection. An intrinsic proof of the existence and uniqueness theorem for such connection is investigated. Moreover, it is shown that for such connection, the associated semi-spray coincides with the canonical spray and the associated nonlinear connection coincides with the Barthel connection. Explicit intrinsic expression relating this connection and Cartan connection is deduced. We also investigate some applications concerning the fundamental geometric objects associated with this connection. Finally, three important results concerning the curvature tensors associated to a special vertical recurrent Finsler connection are studied.

THE SET OF ZOLL METRICS IS NOT PRESERVED BY SOME GEOMETRIC FLOWS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.855-861
    • /
    • 2019
  • The geodesics on the round 2-sphere $S^2$ are all simple closed curves of equal length. In 1903 Otto Zoll introduced other Riemannian surfaces with the same property. After that, his name is attached to the Riemannian manifolds whose geodesics are all simple closed curves of the same length. The question that "whether or not the set of Zoll metrics on 2-sphere $S^2$ is connected?" is still an outstanding open problem in the theory of Zoll manifolds. In the present paper, continuing the work of D. Jane for the case of the Ricci flow, we show that a naive application of some famous geometric flows does not work to answer this problem. In fact, we identify an attribute of Zoll manifolds and prove that along the geometric flows this quantity no longer reflects a Zoll metric. At the end, we will establish an alternative proof of this fact.

MODULAR MULTIPLICATIVE INVERSES OF FIBONACCI NUMBERS

  • Song, Hyun-Jong
    • East Asian mathematical journal
    • /
    • v.35 no.3
    • /
    • pp.285-288
    • /
    • 2019
  • Let $F_n$, $n{\in}{\mathbb{N}}$ be the n - th Fibonacci number, and let (p, q) be one of ordered pairs ($F_{n+2}$, $F_n$) or ($F_{n+1}$, $F_n$). Then we show that the multiplicative inverse of q mod p as well as that of p mod q are again Fibonacci numbers. For proof of our claim we make use of well-known Cassini, Catlan and dOcagne identities. As an application, we determine the number $N_{p,q}$ of nonzero term of a polynomial ${\Delta}_{p,q}(t)=\frac{(t^{pq}-1)(t-1)}{(t^p-1)(t^q-1)}$ through the Carlitz's formula.

ĆIRIĆ TYPE ALPHA-PSI F-CONTRACTION INVOLVING FIXED POINT ON A CLOSED BALL

  • Hussain, Aftab
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.19-34
    • /
    • 2019
  • The article is written with a view to introducing the new idea of an F-contraction on a closed ball and have new ${\acute{C}}iri{\acute{c}}$ type fixed point theorems in the framework of a complete metric space. That is why this outcome becomes useful for the contraction of the mapping on a closed ball instead of the whole space. At the same time, some comparative examples are constructed which establish the superiority of our results. It can be stated that the results that have come into being give proof of extension as well as substantial generalizations and improvements of several well known results in the existing comparable literature.