

MODULAR MULTIPLICATIVE INVERSES OF FIBONACCI NUMBERS

Hyun-Jong Song

ABSTRACT. Let $F_n, n \in \mathbb{N}$ be the n-th Fibonacci number, and let (p,q) be one of ordered pairs (F_{n+2},F_n) or (F_{n+1},F_n) . Then we show that the multiplicative inverse of $q \mod p$ as well as that of $p \mod q$ are again Fibonacci numbers. For proof of our claim we make use of well-known Cassini, Catlan and dOcagne identities. As an application, we determine the number $N_{p,q}$ of nonzero term of a polynomial $\Delta_{p,q}(t) = \frac{(t^{pq}-1)(t^{-1})}{(t^p-1)(t^q-1)}$ through the Carlitz's formula.

1. Preliminaries

Motivation of problems dealt in this paper arose from two intriguing observations made for a torus knots t(p,q) in knot theory where p,q are relative prime positive integers. One is that for each triple of consecutive Fibonacci numbers F_{n+2}, F_{n+1}, F_n , twisting F_{n+1} -parallel strands of a torus knot $t(F_{n+2}, F_n)$, we have a trivial knot. For more details see [2]. The other is that in 1966 an eminent number theorist Carlitz [1] provided a method of computing the number $N_{p,q}$ of non-zero terms of a polynomial $\Delta_{p,q} = \frac{(t^{pq}-1)(t-1)}{(t^p-1)(t^q-1)}$, which turns out to be the Alexander polynomial of t(p,q). Indeed the Alexander polynomial $\Delta_{p,q}$ is Φ_{pq} , the pq-th cyclotomic polynomial if p,q are distinct primes [3]. Explicit knowledge of $N_{p,q}$ is useful for a certain topological construction of t(p,q) dealt in [5].

Definition 1. Let (p,q) be an ordered pair of relative prime positive integers. Then an ordered pair of positive integers (x,v) is said to be a pairwise modular multiplicative inverse of (p,q) if and only if

- (1) $xq \equiv 1 \mod p \ (1 \le x \le p-1)$ and
- (2) $vp \equiv 1 \mod q \ (1 \le x \le -1).$

Received February 15, 2019; Accepted February 19, 2019.

 $^{2010\} Mathematics\ Subject\ Classification.$ MSC2010: 11B39, 33C05 and 57M25 .

Key words and phrases. Fibonacci numbers, Alexander polynomials, torus knots.

This work was financially supported by a Research Grant of Pukyong National University (2017 year).

286 H.-J. SONG

Note that a pairwise modular multiplicative inverse of (p,q) is uniquely determined.

From [4, Proposition 2.1] we have.

Lemma 1.1. Under the notations in Definition 1.1, the following statements are equivalent.

- (1) (x, v) is the pairwise modular multiplicative inverse of (p, q)
- (2) there exists a uniquely determined quadruple of positive imtegers u, v, x and y such that

$$(1) xv - yu = 1$$

$$(2) p = x + y$$

$$(3) q = u + v$$

Remark 1. In Lemma we can replace equation (1.1) by one of following equations.

$$(4) qx - pu = 1$$

$$(5) pv - qy = 1$$

From[4, Corollary 2.6] we have.

Lemma 1.2. The number, denoted by $N_{p,q}$, of all non-zero terms of $\Delta_{p,q}(t)$ is equal to vx + uy = 2vx - 1.

For simplicity we assume that p > q.

We recall three well known identities which naturally reveals modular multiplicative inverse of a pair of Fibonacci numbers.

A: Cassinis identity

$$F_{n-1}F_{n+1} - F_n^2 = (-1)^n$$

is divided to two subcases: for each $k \in \mathbb{N}$

$$(6) F_{2k-1}F_{2k+1} - F_{2k}^2 = 1$$

$$F_{2k+1}^2 - F_{2k}F_{2k+2} = 1$$

B: Catalans identity

$$F_n^2 - F_{n-2}F_{n+2} = (-1)^{n-2}$$

is divided to two subcases: for each $k \in \mathbb{N}$

$$F_{2k}^2 - F_{2k-2}F_{2k+2} = 1$$

(9)
$$F_{2k-1}F_{2k+3} - F_{2k+1}^2 = 1$$

C: dOcagnes identity

$$F_{n+2}F_{n+1} - F_nF_{n+3} = (-1)^n$$

is divided to two subcases: for each $k \in \mathbb{N}$

$$F_{2k+2}F_{2k+1} - F_{2k}F_{2k+3} = 1$$

$$F_{2k-1}F_{2k+2} - F_{2k+1}F_{2k} = 1$$

2. The main results

The following theorem shows intriguing applications of the three well known identities among a sequence of Fibonacci numbers to detecting a pairwise modular multiplicative inverse for a suitable two Fibonacci numbers.

Theorem 2.1. For each $k \in \mathbb{N}$ we have:

- (1) (F_{2k-1}, F_{2k-1}) is the parewise multiplicative inverse of (F_{2k+1}, F_{2k}) . (2) (F_{2k+1}, F_{2k-1}) is the parewise multiplicative inverse of (F_{2k+2}, F_{2k+1}) . (3) (F_{2k}, F_{2k-1}) is the parewise multiplicative inverse of (F_{2k+2}, F_{2k}) . (4) (F_{2k+2}, F_{2k-1}) is the parewise multiplicative inverse of (F_{2k+3}, F_{2k+1}) .
- *Proof.* (1) For $(p,q) = (F_{2k+1}, F_{2k})$ and $(x,u) = (F_{2k-1}, F_{2k-2})$, applying the d'Ocagne's identity (10) to equation (4) we have the pairwise multiplicative inverse (F_{2k-1}, F_{2k-1}) of (F_{2k+1}, F_{2k}) . In this case equation (5) corresponds to the Cassinis identity (6), since

$$\begin{array}{rl} (F_{2k}-F_{2k-2})F_{2k+1}-(F_{2k+1}-F_{2k-1})F_{2k} &=1; \\ F_{2k-1}F_{2k+1}-F_{2k}^2 &=1 \end{array}$$

(2) For $(p,q) = (F_{2k+2}, F_{2k+1})$ and $(x,u) = (F_{2k+1}, F_{2k})$, applying the Cassini identity (7) to equation (4) we have the pairwise multiplicative inverse (F_{2k+1}, F_{2k-1}) of (F_{2k+2}, F_{2k+1}) . In this case equation (5) corresponds to dOcagnes identity (11), since

$$\begin{array}{rl} (F_{2k+1}-F_{2k})F_{2k+2}-(F_{2k+2}-F_{2k+1})F_{2k+1}&=1;\\ F_{2k-1}F_{2k+2}-F_{2k}F_{2k+1}&=1 \end{array}$$

(3) For $(p,q) = (F_{2k+2}, F_{2k})$ and $(x,u) = (F_{2k}, F_{2k-2})$, applying the Caltatans identity (8) to equation (4), we have the pairwise multiplicative inverse (F_{2k}, F_{2k-1}) of (F_{2k+2}, F_{2k}) . In this case equation (1.5) corresponds to dOcagnes identity (1.11), since

$$(F_{2k} - F_{2k-2})F_{2k+2} - (F_{2k+2} - F_{2k})F_{2k} = 1;$$

$$F_{2k-1}F_{2k+2} - F_{2k+1}F_{2k} = 1.$$

(4) For $(p,q) = (F_{2k+3}, F_{2k+1})$ and $(x,u) = (F_{2k+2}, F_{2k})$, identifying the dOcagnes identity (10) to equation (4) we have the pairwise multiplicative inverse (F_{2k+2}, F_{2k-1}) of (F_{2k+3}, F_{2k+1}) . In this case equation (5) corresponds to the Catalans identity (9), since

$$\begin{array}{rl} (F_{2k+1}-F_{2k})F_{2k+3}-(F_{2k+3}-F_{2k+2})F_{2k+1}&=1;\\ F_{2k-1}F_{2k+3}-F_{2k+1}^2&=1. \end{array}$$

As an application, we determine the number $N_{p,q}$ of non-zero term of the Alexander polynomial $\Delta_{p,q}(t) = \frac{(t^{pq}-1)(t-1)}{(t^p-1)(t^q-1)}$ of a torus knot t(p,q) as follows:

288 H.-J. SONG

Corollary 2.2.

$$\begin{array}{lclcrcl} (1) & N_{F_{2k+1},F_{2k}} & = & 2F_{2k-1}^2 - 1 \\ (2) & N_{F_{2k+2},F_{2k+1}} & = & 2F_{2k+1}F_{2k-1} - 1 \\ (3) & N_{F_{2k+2},F_{2k}} & = & 2F_{2k}F_{2k-1} - 1 \\ (4) & N_{F_{2k+3},F_{2k+1}} & = & 2F_{2k+2}F_{2k-1} - 1 \end{array}$$

Applying the method introduced in [5] to the Corollary 2.2, we shall determine (1,1)-diagrams of torus knots $t(F_n,F_{n+2})$ for each $n\geq 3$.

References

- L. Carlitz, The number of terms in the cyclotomic polynomial F_{pq}(x), Amer. Math. Monthly, Vol. 73, No. 9 (Nov., 1966), 979–981.
- [2] S.Y. Lee, Twisted torus knots that are unknotted, Int. Math. Res. Not. IMRN 2014, no. 18, 4958-4996.
- [3] T,Y. Lam and K.H. Leung On the cyclotomic polynomial $\Phi_{pq}(x)$, Amer. Math. Monthly, Vol. 103, No. 7 (Aug. Sep., 1996), 562–564
- [4] H.-J. Song, Two dimensional arrays for Alexander polynomials of torus knots, Commun. Korean Math. Soc. 32 (2017), no. 1, 193-200.
- [5] H.-J. Song, Pointed rail road systems for (1,1)-diagrams of torus knots, in preparation.

Hyun-Jong Song

Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Korea

 $E\text{-}mail\ address{:}\ \mathtt{hjsong@pknu.ac.kr}$