BETA-EXPANSIONS WITH PISOT BASES OVER $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$

Mohamed Hbaib

Abstract

It is well known that if the β-expansion of any nonnegative integer is finite, then β is a Pisot or Salem number. We prove here that in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$, the β-expansion of the polynomial part of β is finite if and only if β is a Pisot series. Consequently we give an other proof of Scheicher theorem about finiteness property in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$. Finally we show that if the base β is a Pisot series, then there is a bound of the length of the fractional part of β-expansion of any polynomial P in $\mathbb{F}_{q}[x]$.

1. Introduction

The β-expansions of real numbers were introduced by A. Rényi [7]. Since then, their arithmetic, diophantine and ergodic properties have been extensively studied by several authors.

Let $\beta>1$ be a real number. The β-expansion of a real number $x \in[0,1)$ is defined as the sequence $d_{\beta}(x)=\left(x_{i}\right)_{i \geq 1}$ with values in $\{0,1, \ldots,[\beta]\}$ produced by the β-transformation $T_{\beta}: x \rightarrow \beta x(\bmod 1)$ as follows:

$$
\forall i \geq 1, x_{i}=\left[\beta T_{\beta}^{i-1}(x)\right], \quad \text { and thus } \quad x=\sum_{i \geq 1} \frac{x_{i}}{\beta^{i}}
$$

Now let $x \in \mathbb{R}_{+}$with $x \geq 1$, then there is a unique $k \in \mathbb{N}$ such that $|\beta|^{k} \leq x<$ $|\beta|^{k+1}$. Hence $\left|\frac{x}{\beta^{k+1}}\right|<1$ and we can represent x by shifting $d_{\beta}\left(\frac{x}{\beta^{k+1}}\right)$ by $k+1$ digits to the left. Therefore, if $d_{\beta}(x)=0 . d_{1} d_{2} d_{3} \ldots$, then $d_{\beta}(\beta x)=d_{1} . d_{2} d_{3} \ldots$. An expansion is finite if $\left(x_{i}\right)_{i \geq 1}$ is eventually 0 . A β-expansion is periodic if there exists $p \geq 1$ and $m \geq 1$ such that $x_{k}=x_{k+p}$ holds for all $k \geq m$; if $x_{k}=x_{k+p}$ holds for all $k \geq 1$, then it is purely periodic. We denote by $\operatorname{Fin}(\beta)$ the nonnegative numbers with finite β-expansions.

Let $\mathbb{Z}[\beta]$ be the smallest ring containing \mathbb{Z} and β. Denote by $\mathbb{Z}[\beta]_{\geq 0}$ the non negative elements of $\mathbb{Z}[\beta]$. We say that the number β has the finiteness property (F) if

$$
\operatorname{Fin}(\beta)=\mathbb{Z}\left[\beta^{-1}\right]_{\geq 0}
$$

Received September 1, 2010.
2010 Mathematics Subject Classification. 11R06, 37B50.
Key words and phrases. formal power series, β-expansion, Pisot series.
holds. This property was introduced by Frougny and Solomyak [3]. They showed that it implies β is a Pisot number, i.e., a real algebraic integer greater than 1 with all conjugates strictly inside the unit circle, and they found the following class of Pisot numbers satisfying this property.

Theorem 1.1 ([3]). If β is the dominant root of polynomial $x^{d}-b_{1} x^{d-1}-$ $b_{2} x^{d-2}-\cdots-b_{d} \in \mathbb{Z}[x]$ with $b_{1} \geq b_{2} \geq \cdots \geq b_{d}$, then β is a Pisot number and has the property (F).

Another class of Pisot numbers with property (F) was found by Hollander.
Theorem 1.2 ([5]). If β is the dominant root of polynomial

$$
x^{d}-b_{1} x^{d-1}-b_{2} x^{d-2}-\cdots-b_{d} \text { with } b_{1}>\sum_{i=2}^{d} b_{i} \text { and } b_{i} \geq 0(1 \leq i \leq d)
$$

then β is a Pisot number satisfying the finiteness property.
Note that there are Pisot numbers without property (F), in particular all numbers with infinite expansion of one.

It is proved in [3] that if $\mathbb{N} \subset \operatorname{Fin}(\beta)$, then β is a Pisot or a Salem number and it is not the case if we have only $d_{\beta}(1)$ finite. Also S. Akiyama has proved in [1] that if β has the finiteness property, then there exists a positive constant c such that any rational in $[0, c[$ has purely periodic β-expansion.

2. β-expansions in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$

Let \mathbb{F}_{q} be a finite field of q elements, $\mathbb{F}_{q}[x]$ the ring of polynomials with coefficients in $\mathbb{F}_{q}, \mathbb{F}_{q}(x)$ the field of rational functions and $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ the field of formal power series of the form:

$$
f=\sum_{k=-\infty}^{l} f_{k} x^{k}, \quad f_{k} \in \mathbb{F}_{q},
$$

where

$$
l=\operatorname{deg} f:= \begin{cases}\max \left\{k: f_{k} \neq 0\right\} & \text { if } f \neq 0 \\ -\infty & \text { if } f=0\end{cases}
$$

Define the absolute value

$$
|f|= \begin{cases}q^{\operatorname{deg} f} & \text { for } f \neq 0 \\ 0 & \text { for } f=0\end{cases}
$$

Since $|\cdot|$ is not Archimedean, then it fulfills the strict triangle inequality:

$$
\begin{gathered}
|f+g| \leq \max (|f|,|g|) \quad \text { and } \\
|f+g|=\max (|f|,|g|) \quad \text { if } \quad|f| \neq|g| .
\end{gathered}
$$

For $f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$, define the integer (polynomial) part $[f]=\sum_{k=0}^{l} f_{k} x^{k}$ where the empty sum, as usual, is defined to be zero. Therefore $[f] \in \mathbb{F}_{q}[x]$ and $f-[f] \in D(0,1)$ (the open unit disc) for all $f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$.

Proposition 2.1 ([6]). Let K be a complete field with respect to a non Archimedian absolute value $|\cdot|$ and $(K \subset L)$ be an algebraic extension of degree m. Then $|\cdot|$ has a unique extension to L defined by $|a|=\sqrt[m]{\left|N_{L / K}(a)\right|}$ and L is complete with respect to this extension.

We apply this proposition to algebraic elements of $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$. Since $\mathbb{F}_{q}[x] \subset$ $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$, then every algebraic element in $\mathbb{F}_{q}[x]$ can be valuated. However, since $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ is not algebraically closed, such an element need not be necessarily a formal power series.

An element $\beta \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ is called a Pisot (resp Salem) element if it is an algebraic integer over $\mathbb{F}_{q}[x]$ such that $|\beta|>1$ and $\left|\beta_{j}\right|<1$ for all conjugates β_{j} (resp $\left|\beta_{j}\right| \leq 1$ and there exists at least one conjugate β_{k} such that $\left|\beta_{k}\right|=$ 1). Bateman and Duquette [2] characterized the Pisot and Salem elements in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right):$

Theorem 2.1. Let $\beta \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ be an algebraic integer over $\mathbb{F}_{q}[x]$ and

$$
P(y)=y^{n}-A_{1} y^{n-1}-\cdots-A_{n}, \quad A_{i} \in \mathbb{F}_{q}[x]
$$

be its minimal polynomial. Then
(i) β is a Pisot element if and only if $\left|A_{1}\right|>\max _{2 \leq j \leq n}\left|A_{i}\right|$.
(ii) β is a Salem element if and only if $\left|A_{1}\right|=\max _{2 \leq j \leq n}\left|A_{i}\right|$.

Let $\beta, f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ where $|\beta|>1$ and $f \in M_{0}$. A representation in base β (or β-representation) of f is a sequence $\left(d_{i}\right)_{i \geq 1}, d_{i} \in \mathbb{F}_{q}[x]$, such that

$$
f=\sum_{i \geq 1} \frac{d_{i}}{\beta^{i}}
$$

A particular β-representation of f is called the β-expansion of f and noted $d_{\beta}(f)$. It is obtained by using the β-transformation T_{β} in M_{0} which is given by the mapping:

$$
\begin{aligned}
T_{\beta}: D(0,1) & \longrightarrow D(0,1) \\
f & \longmapsto \beta f-[\beta f]
\end{aligned}
$$

Thus, $d_{\beta}(f)=\left(d_{i}\right)_{i \geq 1}$ if and only if $d_{i}=\left[\beta T_{\beta}^{i-1}(f)\right]$. Note that $d_{\beta}(f)$ is finite if and only if there is a $k \geq 0$ such that $T_{\beta}^{k}(f)=0, d_{\beta}(f)$ is ultimately periodic if and only if there is some smallest $p \geq 0$ (the pre-period length) and $s \geq 1$ (the period length) for which $T_{\beta}^{p+s}(f)=T_{\beta}^{p}(f)$.

Now let $f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ be an element with $|f| \geq 1$. Then there is a unique $k \in \mathbb{N}$ such that $|\beta|^{k} \leq|f|<|\beta|^{k+1}$. Hence $\left|\frac{f}{\beta^{k+1}}\right|<1$ and we can represent f by shifting $d_{\beta}\left(\frac{f}{\beta^{k+1}}\right)$ by $k+1$ digits to the left. Therefore, if $d_{\beta}(f)=0 . d_{1} d_{2} d_{3} \ldots$, then $d_{\beta}(\beta f)=d_{1} . d_{2} d_{3} \ldots$.

We say that $d_{\beta}(f)$ is finite when $d_{i}=0$ for all sufficiently large i. This is the case when there is an integer $i \geq 0$ such that $T_{\beta}^{i}(f)=0$. If $d_{\beta}(f)=$
$d_{l} d_{l-1} \ldots d_{0}, d_{-1} \ldots d_{m}$, let $\operatorname{deg}_{\beta}(f)=k$ and $\operatorname{ord}_{\beta}(f)=m$, where m and l are in \mathbb{Z}.

In the sequel, we will use the following notation:

$$
\operatorname{Fin}(\beta)=\left\{f \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right): d_{\beta}(f) \text { is finite }\right\} .
$$

Remark 2.2. In contrast to the real case, there is no carry occurring, when we add two digits. Therefore, if $z, w \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$, we have $d_{\beta}(z+w)=$ $d_{\beta}(z)+d_{\beta}(w)$ digitwise. We have also $d_{\beta}(c f)=c d_{\beta}(f)$ for every $c \in \mathbb{F}_{q}$.

Lemma $2.3([4])$. Let $P(y)=A_{n} y^{n}+A_{n-1} y^{n-1}+\cdots+A_{0}$, where $A_{i} \in \mathbb{F}_{q}[x]$ for $i=1, \ldots, n$. Then P admits a unique root in $\mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ with absolute value >1 if and only if $\left|A_{n-1}\right|>\left|A_{i}\right|$ for $i \neq n-1$.

Theorem 2.2 ([4]). An infinite sequence $\left(d_{j}\right)_{j \geq 1}$ is the β-expansion of $f \in M_{0}$ if and only if it is a β-representation of f and $\left|d_{j}\right|<|\beta|$ for $j \geq 1$.

In the field of formal series, it was proved independently by Hbaib - Mkaouar and Scheicher the following theorems:
Theorem 2.3 ([8]). β is a Pisot element if and only if $\operatorname{Fin}(\beta)=\mathbb{F}_{q}\left[x, \beta^{-1}\right]$.
Theorem 2.4 ([4]). β is a Pisot element if and only if $d_{\beta}(1)$ is finite.

3. Results

In this section, we concentrate on the case that β is a Pisot series of algebraical degree d. First, we begin with this theorem which gives a characterization of Pisot series:

Theorem 3.1. Let $\beta \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right)$ such that $|\beta|>1$. Then β is a Pisot series if and only if the β-expansion of $\left(x^{m}\right)$ is finite, where $m=\operatorname{deg}(\beta)$.

Proof. Let $P(y)=y^{d}-A_{d-1} y^{d-1}-A_{d-2} y^{d-2}-\cdots-A_{0}$ be the minimal polynomial of β. Since β is a Pisot series, then $\left|A_{d-1}\right|=|\beta|$ and $\left|A_{i}\right|<|\beta|$ for all $i<d-1$. However, $\operatorname{deg}(\beta)=m$, then A_{d-1} is the unique polynomial A_{i} of degree m and let c be his dominant coefficient, so

$$
c x^{m} \beta^{d-1}=-\beta^{d}-\left(A_{d-1}-c x^{m}\right) \beta^{d-1}-A_{d-2} \beta^{d-2}-\cdots-A_{0} .
$$

Therefore

$$
c x^{m}=\beta-\left(A_{d-1}-c x^{m}\right)-\frac{A_{d-2}}{\beta}-\cdots-\frac{A_{0}}{\beta^{d-1}} .
$$

According to Theorem 2.2 , the last equality is the β-expansion of $c x^{m}$, which implies that $d_{\beta}\left(x^{m}\right)$ is finite and $\operatorname{ord}_{\beta}\left(x^{m}\right)=1-d$.

Reciprocally, assume that $d_{\beta}\left(x^{m}\right)=a_{1} a_{0} \bullet a_{-1} \cdots a_{-n}$ is finite. We have then:

$$
x^{m}=a_{1} \beta+a_{0}+\frac{a_{-1}}{\beta}+\frac{a_{-2}}{\beta^{2}}+\cdots+\frac{a_{-n}}{\beta^{-n}} .
$$

Multiplying by β^{n}, we have

$$
-a_{1} \beta^{n+1}+\beta^{n}\left(x^{m}-a_{0}\right)-a_{1} \beta^{n-1}-a_{2} \beta^{n-2}-\cdots-a_{n-1} \beta=0 .
$$

Since $\left|a_{i}\right|<|\beta|=\left|x^{m}\right|$, then $\left|x^{m}-a_{0}\right|>\left|a_{i}\right|$ for every $i \leq 1$. Then according to Lemma 2.3β is a Pisot series.

Combining Theorem 3.1 with Remark 2.2 we obtain:
Corollary 3.2. β is a Pisot series if and only if the β-expansion of the polynomial part of β is finite.

The following result proved by K. Scheicher [8] can be derived from Theorem 3.1.

Theorem 3.3. Let $\beta \in \mathbb{F}_{q}\left(\left(x^{-1}\right)\right),|\beta|>1$. Then β is a Pisot series if and only if $\operatorname{Fin}(\beta)=\mathbb{F}_{q}\left[x, \beta^{-1}\right]$.
Proof. It is trivial that $\operatorname{Fin}(\beta) \subset \mathbb{F}_{q}\left[x, \beta^{-1}\right]$, we need only to prove the opposite inclusion. Suppose that $|\beta|=q^{m}$, i.e., $\operatorname{deg}(\beta)=m \geq 1$, then $d_{\beta}\left(x^{k}\right)$ is finite for all $0 \leq k \leq m$. We will prove now by induction that $d_{\beta}\left(x^{k}\right)$ is finite for all $k \geq m$. According to Theorem 2.4, this is true for $k=m$. Assume now that $d_{\beta}\left(x^{k}\right)$ is finite, i.e.,
$x^{k}=a_{s} \beta^{s}+\cdots+a_{0}+\frac{a_{-1}}{\beta}+\cdots+\frac{a_{-n}}{\beta^{n}} \quad$ where $\quad a_{h}=\sum_{j=0}^{m-1} c_{j}^{h} x^{j},-n \leq h \leq s$.
Then,

$$
x^{k+1}=x a_{s} \beta^{s}+\cdots+x a_{0}+\frac{x a_{-1}}{\beta}+\cdots+\frac{x a_{-n}}{\beta^{n}} .
$$

However $\operatorname{deg}\left(a_{i}\right) \leq m-1$, so, $\operatorname{deg}\left(x a_{i}\right) \leq m$, which implies

$$
\begin{aligned}
x^{k+1}= & \left(c_{m-1}^{s} x^{m}+\cdots+c_{0}^{s} x\right) \beta^{s}+\cdots+\left(c_{m-1}^{0} x^{m}+\cdots+c_{0}^{0} x\right) \\
& +\frac{c_{m-1}^{-1} x^{m}+\cdots+c_{0}^{-1} x}{\beta}+\cdots+\frac{c_{m-1}^{-n} x^{m}+\cdots+c_{0}^{-n} x}{\beta^{n}} .
\end{aligned}
$$

If we replace in the last equality x^{m} by its finite β-expansion, we get a β representation of x^{k+1} which is the β-expansion of x^{k+1} according to Theorem 2.1.

Finally, we conclude that $d_{\beta}\left(x^{k}\right)$ is finite for all $k \geq m$ and then all polynomials admits finite β-expansion (Remark 2.2), and if we divide by β^{-i} for all $i \geq 1$, we get also a finite β-expansion.

Reciprocally, assume that $\mathbb{F}_{q}\left[x, \beta^{-1}\right]=\operatorname{Fin}(\beta)$, especially, $d_{\beta}\left(x^{m}\right)$ is finite. Therefore by Theorem 3.1, β is Pisot.

We give now a quantitative version of the results above. One may ask if there is a bound on the increase of the length of the beta-expansion of polynomials. The answer is yes if the base is a Pisot element.

Theorem 3.4. Let β be a Pisot series of algebraical degree d and let $k \geq m=$ $\operatorname{deg}(\beta)$. Then

$$
\operatorname{ord}_{\beta}\left(x^{k}\right) \geq(k-m+1)(1-d)
$$

Proof. Since β is Pisot of algebraical degree d, from Lemma $3.2 \operatorname{ord}_{\beta}\left(x^{m}\right)$ is finite and equal to $(1-d)$. Let

$$
x^{m}=a_{1} \beta+a_{0}+\frac{a_{-1}}{\beta}+\frac{a_{-2}}{\beta^{2}}+\cdots+\frac{m_{1-d}}{\beta^{d-1}}
$$

be the beta-expansion of x^{m}. Now let $f \in \mathbb{F}_{q}\left[x, \beta^{-1}\right]$ such that $d_{\beta}(f)=$ $b_{s} \cdots b_{0} \bullet b_{-1} \cdots b_{-n}$. We have then:

$$
f=b_{s} \beta^{s}+\cdots+b_{0}+\frac{b_{-1}}{\beta}+\frac{b_{-2}}{\beta^{2}}+\cdots+\frac{b_{-n}}{\beta^{n}} .
$$

Multiplying by x, we get

$$
x f=b_{s} x \beta^{s}+\cdots+b_{0} x+\frac{b_{-1} x}{\beta}+\frac{b_{-2} x}{\beta^{2}}+\cdots+\frac{b_{-n} x}{\beta^{n}} .
$$

However $\operatorname{ord}_{\beta}\left(b_{i} x\right) \geq 1-d$ because $\operatorname{deg}\left(b_{i}\right)<m$ for all $s \leq i \leq-n$, so $\operatorname{ord}_{\beta}(x f) \geq \operatorname{ord}_{\beta}(f)+1-d$. If we replace f by x^{m}, we will have: $\operatorname{ord}_{\beta}\left(x^{m+1}\right) \geq$ $2(1-d)$ and by a simple induction we get $\operatorname{ord}_{\beta}\left(x^{k}\right) \geq(k-m+1)(1-d)$ for all $k \geq m$.

Theorem 3.5. Let β be a Pisot unit series of algebraical degree d and let $k \geq m=\operatorname{deg}(\beta)$. Then

$$
(k-m+1)(1-d) \leq \operatorname{ord}_{\beta}\left(x^{k}\right) \leq\left(\frac{k}{m}-1\right)(1-d)
$$

Proof. It suffices to show the first inequality. Let $\beta_{2}, \ldots, \beta_{d}$ the conjugates of β in the algebraic closure of $\mathbb{F}_{d}\left(\left(x^{-1}\right)\right)$. Since β is unit we have $\left|\beta \beta_{2} \ldots \beta_{d}\right|=1$. It implies that $\left|\beta_{2} \ldots \beta_{d}\right|=\frac{1}{|\beta|}$, so there exists at least one conjugate β_{j} such that

$$
\begin{equation*}
\left|\beta_{j}\right|>\frac{1}{|\beta|^{\frac{1}{d-1}}} \tag{1}
\end{equation*}
$$

Let

$$
x^{k}=a_{-s} \beta^{s}+\cdots+a_{0}+\frac{a_{1}}{\beta}+\frac{a_{2}}{\beta^{2}}+\cdots+\frac{a_{n}}{\beta^{n}}
$$

be the expansion of x^{k}. We have then,

$$
\begin{equation*}
x^{k}=a_{-s} \beta_{j}^{s}+\cdots+a_{0}+\frac{a_{1}}{\beta_{j}}+\frac{a_{2}}{\beta_{j}^{2}}+\cdots+\frac{a_{n}}{\beta_{j}^{n}} \tag{2}
\end{equation*}
$$

So from (1) and (2), we get

$$
\left|x^{k}\right|<\frac{|\beta|}{\left|\beta_{j}\right|^{n}}<|\beta|^{1+\frac{n}{d-1}}
$$

hence $k<m\left(1+\frac{n}{d-1}\right)$ which implies that

$$
\left(\frac{k}{m}-1\right)(d-1)<n=-\operatorname{ord}_{\beta}\left(x^{k}\right)
$$

Theorem 3.6. Let β be a quadratic Pisot unit with $\operatorname{deg}(\beta)=1$. Then for all $k \geq 1, \operatorname{ord}_{\beta}\left(x^{k}\right)=-k$.

Proof. According to Theorem 3.5 and for $m=1$, we have

$$
k(1-d) \leq \operatorname{ord}_{\beta}\left(x^{k}\right)<(k-1)(1-d)
$$

Since β is quadratic, then $d=2$ and $k-1<-\operatorname{ord}_{\beta}\left(x^{k}\right) \leq k$. Therefore $\operatorname{ord}_{\beta}\left(x^{k}\right)=-k$.
Corollary 3.7. Let β be a quadratic Pisot unit with $\operatorname{deg}(\beta)=1$. Then for all $P \in \mathbb{F}_{q}[x]$,

$$
\operatorname{ord}_{\beta}(P)=-\operatorname{deg}(P)
$$

Corollary 3.8. Let β be a Pisot series of algebraical degree d with $\operatorname{deg}(\beta)=m$. Then for all polynomials P of degree $\geq m$,

$$
\operatorname{ord}_{\beta}(P) \geq(\operatorname{deg} P-m+1)(1-d)
$$

References

[1] S. Akiyama, Pisot numbers and greedy algorithm, Number theory (Eger, 1996), 9-21, de Gruyter, Berlin, 1998.
[2] P. Bateman and A. L. Duquette, The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series, Illinois J. Math. 6 (1962) 594-606.
[3] C. Frougny and B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 713-723.
[4] M. Hbaib and M. Mkaouar, Sur le beta-développement de 1 dans le corps des séries formelles, Int. J. Number Theory 2 (2006), no. 3, 365-378.
[5] M. Hollander, Linear numeration systems, Finite beta-expansion and discrete spectrum of substitution dynamical systems, Ph. D thesis, University of Washington, 1966.
[6] J. Neukirch, Algebraic Number Theory, Translated from the 1992 German original and with a note by Norbert Schappacher.With a foreword by G. Harder.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 322. Springer-Verlag, Berlin, 1999.
[7] A. Rènyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477-493.
[8] K. Scheicher, β-expansions in algebraic function fields over finite fields, Finite Fields Appl. 13 (2007), no. 2, 394-410.

Département de Mathématiques
Faculté des Sciences de Sfax
BP 1171, 3000 Sfax, Tunisia
E-mail address: mmmhbaib@gmail.com

