BETA-EXPANSIONS WITH PISOT BASES OVER $\mathbb{F}_q((x^{-1}))$

Mohamed Hbaib

ABSTRACT. It is well known that if the β -expansion of any nonnegative integer is finite, then β is a Pisot or Salem number. We prove here that in $\mathbb{F}_q((x^{-1}))$, the β -expansion of the polynomial part of β is finite if and only if β is a Pisot series. Consequently we give an other proof of Scheicher theorem about finiteness property in $\mathbb{F}_q((x^{-1}))$. Finally we show that if the base β is a Pisot series, then there is a bound of the length of the fractional part of β -expansion of any polynomial P in $\mathbb{F}_q[x]$.

1. Introduction

The β -expansions of real numbers were introduced by A. Rényi [7]. Since then, their arithmetic, diophantine and ergodic properties have been extensively studied by several authors.

Let $\beta > 1$ be a real number. The β -expansion of a real number $x \in [0,1)$ is defined as the sequence $d_{\beta}(x) = (x_i)_{i \geq 1}$ with values in $\{0,1,\ldots,[\beta]\}$ produced by the β -transformation $T_{\beta}: x \to \beta x \pmod{1}$ as follows:

$$\forall i \geq 1, \ x_i = [\beta T_{\beta}^{i-1}(x)], \text{ and thus } x = \sum_{i \geq 1} \frac{x_i}{\beta^i}.$$

Now let $x \in \mathbb{R}_+$ with $x \ge 1$, then there is a unique $k \in \mathbb{N}$ such that $|\beta|^k \le x < |\beta|^{k+1}$. Hence $|\frac{x}{\beta^{k+1}}| < 1$ and we can represent x by shifting $d_{\beta}(\frac{x}{\beta^{k+1}})$ by k+1 digits to the left. Therefore, if $d_{\beta}(x) = 0.d_1d_2d_3...$, then $d_{\beta}(\beta x) = d_1.d_2d_3...$. An expansion is finite if $(x_i)_{i\ge 1}$ is eventually 0. A β -expansion is periodic if there exists $p \ge 1$ and $m \ge 1$ such that $x_k = x_{k+p}$ holds for all $k \ge m$; if $x_k = x_{k+p}$ holds for all $k \ge 1$, then it is purely periodic. We denote by $\operatorname{Fin}(\beta)$ the nonnegative numbers with finite β -expansions.

Let $\mathbb{Z}[\beta]$ be the smallest ring containing \mathbb{Z} and β . Denote by $\mathbb{Z}[\beta]_{\geq 0}$ the non negative elements of $\mathbb{Z}[\beta]$. We say that the number β has the finiteness property (F) if

$$\operatorname{Fin}(\beta) = \mathbb{Z}[\beta^{-1}]_{\geq 0}$$

Received September 1, 2010.

 $2010\ Mathematics\ Subject\ Classification.\ 11R06,\ 37B50.$

Key words and phrases. formal power series, β -expansion, Pisot series.

holds. This property was introduced by Frougny and Solomyak [3]. They showed that it implies β is a Pisot number, i.e., a real algebraic integer greater than 1 with all conjugates strictly inside the unit circle, and they found the following class of Pisot numbers satisfying this property.

Theorem 1.1 ([3]). If β is the dominant root of polynomial $x^d - b_1 x^{d-1} - b_2 x^{d-2} - \cdots - b_d \in \mathbb{Z}[x]$ with $b_1 \geq b_2 \geq \cdots \geq b_d$, then β is a Pisot number and has the property (F).

Another class of Pisot numbers with property (F) was found by Hollander.

Theorem 1.2 ([5]). If β is the dominant root of polynomial

$$x^{d} - b_{1}x^{d-1} - b_{2}x^{d-2} - \dots - b_{d} \text{ with } b_{1} > \sum_{i=2}^{d} b_{i} \text{ and } b_{i} \geq 0 \ (1 \leq i \leq d),$$

then β is a Pisot number satisfying the finiteness property.

Note that there are Pisot numbers without property (F), in particular all numbers with infinite expansion of one.

It is proved in [3] that if $\mathbb{N} \subset \text{Fin}(\beta)$, then β is a Pisot or a Salem number and it is not the case if we have only $d_{\beta}(1)$ finite. Also S. Akiyama has proved in [1] that if β has the finiteness property, then there exists a positive constant c such that any rational in [0, c[has purely periodic β -expansion.

2.
$$\beta$$
-expansions in $\mathbb{F}_q((x^{-1}))$

Let \mathbb{F}_q be a finite field of q elements, $\mathbb{F}_q[x]$ the ring of polynomials with coefficients in \mathbb{F}_q , $\mathbb{F}_q(x)$ the field of rational functions and $\mathbb{F}_q((x^{-1}))$ the field of formal power series of the form:

$$f = \sum_{k=-\infty}^{l} f_k x^k, \quad f_k \in \mathbb{F}_q,$$

where

$$l = \deg f := \left\{ \begin{array}{ll} \max\{k: f_k \neq 0\} & \text{if} \quad f \neq 0, \\ -\infty & \text{if} \quad f = 0. \end{array} \right.$$

Define the absolute value

$$|f| = \begin{cases} q^{\deg f} & \text{for } f \neq 0; \\ 0 & \text{for } f = 0. \end{cases}$$

Since | · | is not Archimedean, then it fulfills the strict triangle inequality:

$$|f+g| \le \max(|f|,|g|)$$
 and

$$|f+g|=\max(|f|,|g|)\quad \text{if}\quad |f|\neq |g|.$$

For $f \in \mathbb{F}_q((x^{-1}))$, define the integer (polynomial) part $[f] = \sum_{k=0}^l f_k x^k$ where the empty sum, as usual, is defined to be zero. Therefore $[f] \in \mathbb{F}_q[x]$ and $f - [f] \in D(0,1)$ (the open unit disc) for all $f \in \mathbb{F}_q((x^{-1}))$.

Proposition 2.1 ([6]). Let K be a complete field with respect to a non Archimedian absolute value $|\cdot|$ and $(K \subset L)$ be an algebraic extension of degree m. Then $|\cdot|$ has a unique extension to L defined by $|a| = \sqrt[m]{|N_{L/K}(a)|}$ and L is complete with respect to this extension.

We apply this proposition to algebraic elements of $\mathbb{F}_q((x^{-1}))$. Since $\mathbb{F}_q[x] \subset \mathbb{F}_q((x^{-1}))$, then every algebraic element in $\mathbb{F}_q[x]$ can be valuated. However, since $\mathbb{F}_q((x^{-1}))$ is not algebraically closed, such an element need not be necessarily a formal power series.

An element $\beta \in \mathbb{F}_q((x^{-1}))$ is called a Pisot (resp Salem) element if it is an algebraic integer over $\mathbb{F}_q[x]$ such that $|\beta| > 1$ and $|\beta_j| < 1$ for all conjugates β_j (resp $|\beta_j| \le 1$ and there exists at least one conjugate β_k such that $|\beta_k| = 1$). Bateman and Duquette [2] characterized the Pisot and Salem elements in $\mathbb{F}_q((x^{-1}))$:

Theorem 2.1. Let $\beta \in \mathbb{F}_q((x^{-1}))$ be an algebraic integer over $\mathbb{F}_q[x]$ and

$$P(y) = y^n - A_1 y^{n-1} - \dots - A_n, \quad A_i \in \mathbb{F}_q[x],$$

be its minimal polynomial. Then

- (i) β is a Pisot element if and only if $|A_1| > \max_{2 \le j \le n} |A_i|$.
- (ii) β is a Salem element if and only if $|A_1| = \max_{2 \le j \le n} |A_j|$.

Let $\beta, f \in \mathbb{F}_q((x^{-1}))$ where $|\beta| > 1$ and $f \in M_0$. A representation in base β (or β -representation) of f is a sequence $(d_i)_{i>1}$, $d_i \in \mathbb{F}_q[x]$, such that

$$f = \sum_{i \ge 1} \frac{d_i}{\beta^i}.$$

A particular β -representation of f is called the β -expansion of f and noted $d_{\beta}(f)$. It is obtained by using the β -transformation T_{β} in M_0 which is given by the mapping:

$$T_{\beta}: D(0,1) \longrightarrow D(0,1)$$

$$f \longmapsto \beta f - [\beta f].$$

Thus, $d_{\beta}(f) = (d_i)_{i \geq 1}$ if and only if $d_i = [\beta T_{\beta}^{i-1}(f)]$. Note that $d_{\beta}(f)$ is finite if and only if there is a $k \geq 0$ such that $T_{\beta}^k(f) = 0$, $d_{\beta}(f)$ is ultimately periodic if and only if there is some smallest $p \geq 0$ (the pre-period length) and $s \geq 1$ (the period length) for which $T_{\beta}^{p+s}(f) = T_{\beta}^{p}(f)$.

Now let $f \in \mathbb{F}_q((x^{-1}))$ be an element with $|f| \geq 1$. Then there is a unique $k \in \mathbb{N}$ such that $|\beta|^k \leq |f| < |\beta|^{k+1}$. Hence $|\frac{f}{\beta^{k+1}}| < 1$ and we can represent f by shifting $d_{\beta}(\frac{f}{\beta^{k+1}})$ by k+1 digits to the left. Therefore, if $d_{\beta}(f) = 0.d_1d_2d_3\ldots$, then $d_{\beta}(\beta f) = d_1.d_2d_3\ldots$

We say that $d_{\beta}(f)$ is finite when $d_i = 0$ for all sufficiently large i. This is the case when there is an integer $i \geq 0$ such that $T^i_{\beta}(f) = 0$. If $d_{\beta}(f) = 0$

 $d_l d_{l-1} \dots d_0, d_{l-1} \dots d_m$, let $\deg_{\beta}(f) = k$ and $\operatorname{ord}_{\beta}(f) = m$, where m and l are in \mathbb{Z} .

In the sequel, we will use the following notation:

$$\operatorname{Fin}(\beta) = \{ f \in \mathbb{F}_q((x^{-1})) : d_{\beta}(f) \text{ is finite} \}.$$

Remark 2.2. In contrast to the real case, there is no carry occurring, when we add two digits. Therefore, if $z, w \in \mathbb{F}_q((x^{-1}))$, we have $d_{\beta}(z+w) = d_{\beta}(z) + d_{\beta}(w)$ digitwise. We have also $d_{\beta}(cf) = cd_{\beta}(f)$ for every $c \in \mathbb{F}_q$.

Lemma 2.3 ([4]). Let $P(y) = A_n y^n + A_{n-1} y^{n-1} + \cdots + A_0$, where $A_i \in \mathbb{F}_q[x]$ for $i = 1, \ldots, n$. Then P admits a unique root in $\mathbb{F}_q((x^{-1}))$ with absolute value > 1 if and only if $|A_{n-1}| > |A_i|$ for $i \neq n-1$.

Theorem 2.2 ([4]). An infinite sequence $(d_j)_{j\geq 1}$ is the β -expansion of $f \in M_0$ if and only if it is a β -representation of f and $|d_j| < |\beta|$ for $j \geq 1$.

In the field of formal series, it was proved independently by Hbaib - Mkaouar and Scheicher the following theorems:

Theorem 2.3 ([8]). β is a Pisot element if and only if $Fin(\beta) = \mathbb{F}_q[x, \beta^{-1}]$.

Theorem 2.4 ([4]). β is a Pisot element if and only if $d_{\beta}(1)$ is finite.

3. Results

In this section, we concentrate on the case that β is a Pisot series of algebraical degree d. First, we begin with this theorem which gives a characterization of Pisot series:

Theorem 3.1. Let $\beta \in \mathbb{F}_q((x^{-1}))$ such that $|\beta| > 1$. Then β is a Pisot series if and only if the β -expansion of (x^m) is finite, where $m = \deg(\beta)$.

Proof. Let $P(y) = y^d - A_{d-1}y^{d-1} - A_{d-2}y^{d-2} - \cdots - A_0$ be the minimal polynomial of β . Since β is a Pisot series, then $|A_{d-1}| = |\beta|$ and $|A_i| < |\beta|$ for all i < d-1. However, $\deg(\beta) = m$, then A_{d-1} is the unique polynomial A_i of degree m and let c be his dominant coefficient, so

$$cx^{m}\beta^{d-1} = -\beta^{d} - (A_{d-1} - cx^{m})\beta^{d-1} - A_{d-2}\beta^{d-2} - \dots - A_{0}.$$

Therefore

$$cx^{m} = \beta - (A_{d-1} - cx^{m}) - \frac{A_{d-2}}{\beta} - \dots - \frac{A_{0}}{\beta^{d-1}}.$$

According to Theorem 2.2, the last equality is the β -expansion of cx^m , which implies that $d_{\beta}(x^m)$ is finite and $\operatorname{ord}_{\beta}(x^m) = 1 - d$.

Reciprocally, assume that $d_{\beta}(x^m) = a_1 a_0 \bullet a_{-1} \cdots a_{-n}$ is finite. We have then:

$$x^{m} = a_{1}\beta + a_{0} + \frac{a_{-1}}{\beta} + \frac{a_{-2}}{\beta^{2}} + \dots + \frac{a_{-n}}{\beta^{-n}}.$$

Multiplying by β^n , we have

$$-a_1\beta^{n+1} + \beta^n(x^m - a_0) - a_1\beta^{n-1} - a_2\beta^{n-2} - \dots - a_{n-1}\beta = 0.$$

Since $|a_i| < |\beta| = |x^m|$, then $|x^m - a_0| > |a_i|$ for every $i \le 1$. Then according to Lemma 2.3 β is a Pisot series.

Combining Theorem 3.1 with Remark 2.2 we obtain:

Corollary 3.2. β is a Pisot series if and only if the β -expansion of the polynomial part of β is finite.

The following result proved by K. Scheicher [8] can be derived from Theorem 3.1.

Theorem 3.3. Let $\beta \in \mathbb{F}_q((x^{-1}))$, $|\beta| > 1$. Then β is a Pisot series if and only if $\operatorname{Fin}(\beta) = \mathbb{F}_q[x, \beta^{-1}]$.

Proof. It is trivial that $\operatorname{Fin}(\beta) \subset \mathbb{F}_q[x,\beta^{-1}]$, we need only to prove the opposite inclusion. Suppose that $|\beta| = q^m$, i.e., $\deg(\beta) = m \geq 1$, then $d_{\beta}(x^k)$ is finite for all $0 \leq k \leq m$. We will prove now by induction that $d_{\beta}(x^k)$ is finite for all $k \geq m$. According to Theorem 2.4, this is true for k = m. Assume now that $d_{\beta}(x^k)$ is finite, i.e.,

$$x^{k} = a_{s}\beta^{s} + \dots + a_{0} + \frac{a_{-1}}{\beta} + \dots + \frac{a_{-n}}{\beta^{n}}$$
 where $a_{h} = \sum_{j=0}^{m-1} c_{j}^{h} x^{j}, -n \le h \le s.$

Then,

$$x^{k+1} = xa_s\beta^s + \dots + xa_0 + \frac{xa_{-1}}{\beta} + \dots + \frac{xa_{-n}}{\beta^n}.$$

However $deg(a_i) \leq m-1$, so, $deg(xa_i) \leq m$, which implies

$$x^{k+1} = (c_{m-1}^s x^m + \dots + c_0^s x)\beta^s + \dots + (c_{m-1}^0 x^m + \dots + c_0^0 x) + \frac{c_{m-1}^{-1} x^m + \dots + c_0^{-1} x}{\beta} + \dots + \frac{c_{m-1}^{-n} x^m + \dots + c_0^{-n} x}{\beta^n}$$

If we replace in the last equality x^m by its finite β -expansion, we get a β -representation of x^{k+1} which is the β -expansion of x^{k+1} according to Theorem 2.1.

Finally, we conclude that $d_{\beta}(x^k)$ is finite for all $k \geq m$ and then all polynomials admits finite β -expansion (Remark 2.2), and if we divide by β^{-i} for all $i \geq 1$, we get also a finite β -expansion.

Reciprocally, assume that $\mathbb{F}_q[x,\beta^{-1}]=\operatorname{Fin}(\beta)$, especially, $d_{\beta}(x^m)$ is finite. Therefore by Theorem 3.1, β is Pisot.

We give now a quantitative version of the results above. One may ask if there is a bound on the increase of the length of the beta-expansion of polynomials. The answer is yes if the base is a Pisot element.

Theorem 3.4. Let β be a Pisot series of algebraical degree d and let $k \geq m = \deg(\beta)$. Then

$$\operatorname{ord}_{\beta}(x^k) \ge (k - m + 1)(1 - d).$$

Proof. Since β is Pisot of algebraical degree d, from Lemma 3.2 $\operatorname{ord}_{\beta}(x^m)$ is finite and equal to (1-d). Let

$$x^{m} = a_{1}\beta + a_{0} + \frac{a_{-1}}{\beta} + \frac{a_{-2}}{\beta^{2}} + \dots + \frac{m_{1-d}}{\beta^{d-1}}$$

be the beta-expansion of x^m . Now let $f \in \mathbb{F}_q[x, \beta^{-1}]$ such that $d_{\beta}(f) = b_s \cdots b_0 \bullet b_{-1} \cdots b_{-n}$. We have then:

$$f = b_s \beta^s + \dots + b_0 + \frac{b_{-1}}{\beta} + \frac{b_{-2}}{\beta^2} + \dots + \frac{b_{-n}}{\beta^n}.$$

Multiplying by x, we get

$$xf = b_s x \beta^s + \dots + b_0 x + \frac{b_{-1} x}{\beta} + \frac{b_{-2} x}{\beta^2} + \dots + \frac{b_{-n} x}{\beta^n}.$$

However $\operatorname{ord}_{\beta}(b_i x) \geq 1 - d$ because $\operatorname{deg}(b_i) < m$ for all $s \leq i \leq -n$, so $\operatorname{ord}_{\beta}(xf) \geq \operatorname{ord}_{\beta}(f) + 1 - d$. If we replace f by x^m , we will have: $\operatorname{ord}_{\beta}(x^{m+1}) \geq 2(1-d)$ and by a simple induction we get $\operatorname{ord}_{\beta}(x^k) \geq (k-m+1)(1-d)$ for all $k \geq m$.

Theorem 3.5. Let β be a Pisot unit series of algebraical degree d and let $k \geq m = \deg(\beta)$. Then

$$(k-m+1)(1-d) \le \operatorname{ord}_{\beta}(x^k) \le (\frac{k}{m}-1)(1-d).$$

Proof. It suffices to show the first inequality. Let β_2, \ldots, β_d the conjugates of β in the algebraic closure of $\mathbb{F}_d((x^{-1}))$. Since β is unit we have $|\beta\beta_2\ldots\beta_d|=1$. It implies that $|\beta_2\ldots\beta_d|=\frac{1}{|\beta|}$, so there exists at least one conjugate β_j such that

$$(1) |\beta_j| > \frac{1}{|\beta|^{\frac{1}{d-1}}}.$$

Let

$$x^{k} = a_{-s}\beta^{s} + \dots + a_{0} + \frac{a_{1}}{\beta} + \frac{a_{2}}{\beta^{2}} + \dots + \frac{a_{n}}{\beta^{n}}$$

be the expansion of x^k . We have then,

(2)
$$x^{k} = a_{-s}\beta_{j}^{s} + \dots + a_{0} + \frac{a_{1}}{\beta_{j}} + \frac{a_{2}}{\beta_{j}^{2}} + \dots + \frac{a_{n}}{\beta_{j}^{n}}.$$

So from (1) and (2), we get

$$|x^k| < \frac{|\beta|}{|\beta_j|^n} < |\beta|^{1 + \frac{n}{d-1}},$$

hence $k < m(1 + \frac{n}{d-1})$ which implies that

$$\left(\frac{k}{m} - 1\right)(d - 1) < n = -\operatorname{ord}_{\beta}(x^k).$$

Theorem 3.6. Let β be a quadratic Pisot unit with $\deg(\beta) = 1$. Then for all $k \geq 1$, $\operatorname{ord}_{\beta}(x^k) = -k$.

Proof. According to Theorem 3.5 and for m = 1, we have

$$k(1-d) \le \operatorname{ord}_{\beta}(x^k) < (k-1)(1-d).$$

Since β is quadratic, then d=2 and $k-1<-\operatorname{ord}_{\beta}(x^k)\leq k$. Therefore $\operatorname{ord}_{\beta}(x^k)=-k$.

Corollary 3.7. Let β be a quadratic Pisot unit with $\deg(\beta) = 1$. Then for all $P \in \mathbb{F}_q[x]$,

$$\operatorname{ord}_{\beta}(P) = -\operatorname{deg}(P).$$

Corollary 3.8. Let β be a Pisot series of algebraical degree d with $deg(\beta) = m$. Then for all polynomials P of degree $\geq m$,

$$\operatorname{ord}_{\beta}(P) \ge (\deg P - m + 1)(1 - d).$$

References

- S. Akiyama, Pisot numbers and greedy algorithm, Number theory (Eger, 1996), 9-21, de Gruyter, Berlin, 1998.
- [2] P. Bateman and A. L. Duquette, The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series, Illinois J. Math. 6 (1962) 594-606.
- [3] C. Frougny and B. Solomyak, Finite beta-expansions, Ergodic Theory Dynam. Systems 12 (1992), no. 4, 713–723.
- [4] M. Hbaib and M. Mkaouar, Sur le beta-développement de 1 dans le corps des séries formelles, Int. J. Number Theory 2 (2006), no. 3, 365–378.
- [5] M. Hollander, Linear numeration systems, Finite beta-expansion and discrete spectrum of substitution dynamical systems, Ph. D thesis, University of Washington, 1966.
- [6] J. Neukirch, Algebraic Number Theory, Translated from the 1992 German original and with a note by Norbert Schappacher. With a foreword by G. Harder. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 322. Springer-Verlag, Berlin, 1999.
- [7] A. Rènyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477–493.
- [8] K. Scheicher, β-expansions in algebraic function fields over finite fields, Finite Fields Appl. 13 (2007), no. 2, 394–410.

DÉPARTEMENT DE MATHÉMATIQUES

FACULTÉ DES SCIENCES DE SFAX

BP 1171, 3000 Sfax, Tunisia

E-mail address: mmmhbaib@gmail.com