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BETA-EXPANSIONS WITH PISOT BASES OVER F,((z™1))

MOHAMED HBAIB

ABSTRACT. It is well known that if the S-expansion of any nonnegative
integer is finite, then g is a Pisot or Salem number. We prove here that in
Fq((x™1)), the B-expansion of the polynomial part of 3 is finite if and only
if B is a Pisot series. Consequently we give an other proof of Scheicher
theorem about finiteness property in Fq((z~1)). Finally we show that if
the base (8 is a Pisot series, then there is a bound of the length of the
fractional part of -expansion of any polynomial P in Fy[z].

1. Introduction

The S-expansions of real numbers were introduced by A. Rényi [7]. Since
then, their arithmetic, diophantine and ergodic properties have been exten-
sively studied by several authors.

Let 8 > 1 be a real number. The S-expansion of a real number z € [0, 1) is
defined as the sequence dg(z) = (2;);>1 with values in {0,1,...,[8]} produced
by the S-transformation T : © — Sz (mod 1) as follows:

Ty

E.

Now let z € Ry with o > 1, then there is a unique k € N such that |g|* <z <
|8|¥*1. Hence | 77| <1 and we can represent x by shifting ds( g ) by k+1
digits to the left. Therefore, if dg(z) = 0.d1dads . . ., then dg(Bz) = dy.dads . . ..
An expansion is finite if (x;);>1 is eventually 0. A (-expansion is periodic if
there exists p > 1 and m > 1 such that x; = x4, holds for all £ > m; if
Ty = Tpyp holds for all k > 1, then it is purely periodic. We denote by Fin(5)
the nonnegative numbers with finite S-expansions.

Let Z[8] be the smallest ring containing Z and . Denote by Z[8]>¢ the
non negative elements of Z[3]. We say that the number § has the finiteness
property (F) if

Vi>1, o= [BTéfl(x)], and thus z = Z

i>1

Fin(8) = Z[8™"]20
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holds. This property was introduced by Frougny and Solomyak [3]. They
showed that it implies (3 is a Pisot number, i.e., a real algebraic integer greater
than 1 with all conjugates strictly inside the unit circle, and they found the
following class of Pisot numbers satisfying this property.

Theorem 1.1 ([3]). If B is the dominant root of polynomial x¢ — byxd=1 —
boxd=2 — ... — by € Zlx] with by > by > -+ > by, then B is a Pisot number and
has the property (F).

Another class of Pisot numbers with property (F) was found by Hollander.

Theorem 1.2 ([5]). If 8 is the dominant root of polynomial
d
2t — byt = bpa®? — o — by with by > Y b; and b; >0 (1 <i < d),
=2
then [ is a Pisot number satisfying the finiteness property.

Note that there are Pisot numbers without property (F), in particular all
numbers with infinite expansion of one.

It is proved in [3] that if N C Fin(f), then 8 is a Pisot or a Salem number
and it is not the case if we have only dg(1) finite. Also S. Akiyama has proved
in [1] that if 8 has the finiteness property, then there exists a positive constant
¢ such that any rational in [0, ¢[ has purely periodic S-expansion.

2. (B-expansions in F,((z™1))

Let F, be a finite field of ¢ elements, Fy[z]| the ring of polynomials with
coefficients in F,, F,(x) the field of rational functions and F,((z~!)) the field
of formal power series of the form:

l
f=> fa*, fel,

k=—o00
where By o it 0
max{k : i
l:degf::{_oo{ e 0 A jﬁiof
Define the absolute value
|ﬂ:{wm for f #0:
0 for f=0.

Since | - | is not Archimedean, then it fulfills the strict triangle inequality:
f + gl < max(|f],[g]) and

|f + gl =max(|f|,|g]) if [f|]#]gl]

For f € Fy((z™1)), define the integer (polynomial) part [f] = ZZ:O frx® where
the empty sum, as usual, is defined to be zero. Therefore [f] € Fy[z] and
= [f] € D(0,1) (the open unit disc) for all f € F,((z™1)).
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Proposition 2.1 ([6]). Let K be a complete field with respect to a non Archi-
median absolute value |- | and (K C L) be an algebraic extension of degree m.
Then | - | has a unique extension to L defined by |a| = R/|Np/k(a)| and L is
complete with respect to this extension.

We apply this proposition to algebraic elements of F,((z~1)). Since F,[z] C
F,((z1)), then every algebraic element in F,[z] can be valuated. However,
since F,((z™1)) is not algebraically closed, such an element need not be neces-
sarily a formal power series.

An element 3 € F,((x7')) is called a Pisot (resp Salem) element if it is an
algebraic integer over Fy[x] such that |3| > 1 and |B;] < 1 for all conjugates
Bj (resp |B;] < 1 and there exists at least one conjugate 3 such that 8| =
1). Bateman and Duquette [2] characterized the Pisot and Salem elements in

Fo((z71)):

Theorem 2.1. Let 3 € Fy((z71)) be an algebraic integer over Fy[z] and
Ply) =y" = A"t = = Ay, A; € Fyfa],

be its minimal polynomial. Then

(i) B is a Pisot element if and only if |A1| > maxo<j<p |4
(ii) B is a Salem element if and only if |A1]| = maxo<j<p [4;].

Let 8, f € F,((z™!)) where |8] > 1 and f € M. A representation in base /3
(or B-representation) of f is a sequence (d;);>1, d; € Fy[x], such that

d;
= 2%
i>1
A particular §-representation of f is called the S-expansion of f and noted
dg(f). It is obtained by using the S-transformation T in My which is given
by the mapping:
T3 :D(0,1) — D(0,1)
fo— Bf-I[Bfl

Thus, ds(f) = (d;)i>1 if and only if d; = [8T} " (f)]. Note that dg(f) is finite
if and only if there is a £ > 0 such that Tg(f) =0, dg(f) is ultimately periodic
if and only if there is some smallest p > 0 (the pre-period length) and s > 1
(the period length) for which T%*(f) = T%(f).

Now let f € F,((x7')) be an element with |f| > 1. Then there is a
unique k& € N such that |3|* < |f| < |8/**!. Hence |%\ < 1 and we can
represent f by shifting dg(#) by k + 1 digits to the left. Therefore, if
dg(f) = 0.didads . .., then dg(Bf) = dy.dads . . ..

We say that dg(f) is finite when d; = 0 for all sufficiently large i. This
is the case when there is an integer i > 0 such that T4(f) = 0. If dg(f) =



130 MOHAMED HBAIB

didy—y...do,d_y...dp, let degs(f) = k and ordg(f) = m, where m and [ are
in Z.
In the sequel, we will use the following notation:

Fin(8) = {f € F,((z™1)) : d(f) is finite}.

Remark 2.2. In contrast to the real case, there is no carry occurring, when
we add two digits. Therefore, if 2z, w € F,((z71)), we have dg(z + w) =
dg(z) + dg(w) digitwise. We have also dg(cf) = cdg(f) for every c € F,.

Lemma 2.3 ([4]). Let P(y) = Apy™ + Ap_1y" ' + -+ Ao, where A; € F[z]
fori=1,...,n. Then P admits a unique oot in F,((x~')) with absolute value
> 1 if and only if |Ap—1| > |A;] fori#n—1.

Theorem 2.2 ([4]). An infinite sequence (d;);>1 is the f-expansion of f € My
if and only if it is a S-representation of f and |d;| < |B| for j > 1.

In the field of formal series, it was proved independently by Hbaib - Mkaouar
and Scheicher the following theorems:
Theorem 2.3 ([8]). S is a Pisot element if and only if Fin(B) = Fyz, 37,

Theorem 2.4 ([4]). 5 is a Pisot element if and only if dg(1) is finite.

3. Results

In this section, we concentrate on the case that [ is a Pisot series of alge-
braical degree d. First, we begin with this theorem which gives a characteriza-
tion of Pisot series:

Theorem 3.1. Let 3 € F,((x™1)) such that |3| > 1. Then 3 is a Pisot series
if and only if the B-expansion of (™) is finite, where m = deg(p).

Proof. Let P(y) = y? — Ag_1y? ! — Ag_oy?™2 — ... — Ay be the minimal
polynomial of 5. Since 3 is a Pisot series, then |A4_1| = |f] and |4;| < |B] for
all i < d — 1. However, deg(8) = m, then A;_; is the unique polynomial A; of
degree m and let ¢ be his dominant coefficient, so

me/@dfl — *5(1 o (Ad—l o me)ﬂdfl o Ad—25d72 L AO-

Therefore

cx™ =B — (Ag_1 — ca™) — 5 T g1

According to Theorem 2.2, the last equality is the S-expansion of cx™, which
implies that dg(z™) is finite and ordg(z™) =1 — d.

Reciprocally, assume that dg(z™) = ajap ® a—1 ---a_y is finite. We have
then:

x™ —a16+ao+7+62 ~+B_n.

Multiplying by 5™, we have
—a1 8" 4 B (@™ —ag) — a1 BT —agf" P = — a1 B =0.
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Since |a;| < |B] = |z™], then |z™ — ag| > |a;| for every ¢ < 1. Then according
to Lemma 2.3 8 is a Pisot series. ([

Combining Theorem 3.1 with Remark 2.2 we obtain:

Corollary 3.2. 8 is a Pisot series if and only if the B-expansion of the poly-
nomial part of B is finite.

The following result proved by K. Scheicher [8] can be derived from Theo-
rem 3.1.

Theorem 3.3. Let 3 € F,((x™1)), |3] > 1. Then 8 is a Pisot series if and
only if Fin(B) = Fylz, B71].

Proof. 1t is trivial that Fin(3) C F,[z, 37!], we need only to prove the opposite
inclusion. Suppose that |3| = ¢™, i.e., deg(8) = m > 1, then dg(z¥) is finite
for all 0 < k < m. We will prove now by induction that dg(z*) is finite for all
k > m. According to Theorem 2.4, this is true for k = m. Assume now that
dg(z¥) is finite, i.e.,

m—1
a— a— ;
xk:asﬁs+-~~+a0+—ﬁl+~~~+—ﬁ: where aj = E c?xj, —n < h<s.
i=0
Then,
zTa_ zTa_
xk+1:xa‘gﬂs+~~+1}a0+ Bl+...+ B"n

However deg(a;) < m — 1, so, deg(xa;) < m, which implies

e = (g™ )BT (@™ e )

—1 m —1 —n m —n
Copq "+ oty X +cm71x +-otcy X

B i B
If we replace in the last equality =™ by its finite S-expansion, we get a (-
representation of 2**! which is the -expansion of z¥+1 according to Theorem
2.1.

Finally, we conclude that dg(z*) is finite for all k > m and then all polyno-
mials admits finite -expansion (Remark 2.2), and if we divide by ¢ for all
1> 1, we get also a finite S-expansion.

Reciprocally, assume that F,[z, 37'|=Fin(8), especially, dg(z™) is finite.
Therefore by Theorem 3.1, 3 is Pisot. ([

We give now a quantitative version of the results above. One may ask if there
is a bound on the increase of the length of the beta-expansion of polynomials.
The answer is yes if the base is a Pisot element.

Theorem 3.4. Let B be a Pisot series of algebraical degree d and let k > m =
deg(B). Then

ordg(z®) > (k —m +1)(1 - d).
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Proof. Since f is Pisot of algebraical degree d, from Lemma 3.2 ordg(z™) is
finite and equal to (1 — d). Let
a_ a— my_
xm:alﬁ+ao+71+5—;+---+ ﬁ;f‘
be the beta-expansion of z™. Now let f € F,lz, 37! such that dg(f) =
bg---bgeb_q1---b_,. We have then:

b1  b_o b_n
f=00" 4 +bo+ — + —5 4+
ECEE B
Multiplying by x, we get
b_1x b_ox b_,x
vf =bsxf®+ - +box + —— + -t .
d Tt B

However ordg(b;z) > 1 — d because deg(b;) < m for all s < i < —n, so
ordg(zf) > ordg(f)+1—d. If we replace f by 2™, we will have: ordg(z™*!) >
2(1 — d) and by a simple induction we get ordg(z*) > (k —m + 1)(1 — d) for
all k > m. O

Theorem 3.5. Let 8 be a Pisot unit series of algebraical degree d and let
k> m = deg(B). Then

(k—m+1)(1 —d) < ordg(a¥) < (% — 1)1 —d).

Proof. Tt suffices to show the first inequality. Let (o, ..., 84 the conjugates of
(3 in the algebraic closure of Fy((x71)). Since 3 is unit we have |33 ... 34| = 1.

It implies that |8z ... Bq| = ﬁ, so there exists at least one conjugate f; such
that
1) 8] > —
J ool
BT
Let a  a a
k s n
" =a_gf°+ - +ag+ —+—+--+ —
g B2 g
be the expansion of z*. We have then,
a az Qn
2 P =a Bl tagt 4+
® o T R
So from (1) and (2), we get
18] 14 g
| k| < < ‘6| a-t,
‘Bj|n
hence k < m(1 + z"5) which implies that
k
(E—l)(d—l) <n = —ordg(z¥). 0

Theorem 3.6. Let 8 be a quadratic Pisot unit with deg(8) = 1. Then for all
k> 1, ordg(zk) = —k.
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Proof. According to Theorem 3.5 and for m = 1, we have
k(1 —d) <ordg(z®) < (k—1)(1 — d).

Since # is quadratic, then d = 2 and k — 1 < —ordg(z*) < k. Therefore
ordg(z*) = —k. O

Corollary 3.7. Let 8 be a quadratic Pisot unit with deg(8) = 1. Then for all
P e Fylz],
ordg(P) = —deg(P).

Corollary 3.8. Let 3 be a Pisot series of algebraical degree d with deg(83) = m.
Then for all polynomials P of degree > m,

ordg(P) > (deg P —m+1)(1 —d).
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