Browse > Article
http://dx.doi.org/10.4134/CKMS.c180162

THE SET OF ZOLL METRICS IS NOT PRESERVED BY SOME GEOMETRIC FLOWS  

Azami, Shahroud (Department of Mathematics Faculty of Science Imam Khomeini International University)
Fasihi-Ramandi, Ghodratallah (Department of Mathematics Faculty of Science Imam Khomeini International University)
Publication Information
Communications of the Korean Mathematical Society / v.34, no.3, 2019 , pp. 855-861 More about this Journal
Abstract
The geodesics on the round 2-sphere $S^2$ are all simple closed curves of equal length. In 1903 Otto Zoll introduced other Riemannian surfaces with the same property. After that, his name is attached to the Riemannian manifolds whose geodesics are all simple closed curves of the same length. The question that "whether or not the set of Zoll metrics on 2-sphere $S^2$ is connected?" is still an outstanding open problem in the theory of Zoll manifolds. In the present paper, continuing the work of D. Jane for the case of the Ricci flow, we show that a naive application of some famous geometric flows does not work to answer this problem. In fact, we identify an attribute of Zoll manifolds and prove that along the geometric flows this quantity no longer reflects a Zoll metric. At the end, we will establish an alternative proof of this fact.
Keywords
geometric flow; evolutionary equations; Zoll metrics; geodesic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Berger, A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003. https://doi.org/10.1007/978-3-642-18245-7
2 A. L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, 93, Springer-Verlag, Berlin, 1978.
3 G. Catino, L. Gremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 287 (2017), no. 2, 337-370. https://doi.org/10.2140/pjm.2017.287.337   DOI
4 W.-R. Dai, D.-X. Kong, and K. Liu, Hyperbolic geometric flow (I): short-time existence and nonlinear stability, Pure Appl. Math. Q. 6 (2010), no. 2, 331-359. https://doi.org/10.4310/PAMQ.2010.v6.n2.a3   DOI
5 B. Gambir, Surfaces alignes geod esiques toutes fermees. etude speciale de cless qui sont de revolution, Bulletin des Sciences Math., (2 eme Serie Tome XLIX), Mars 1925.
6 R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diffierential Geom. 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922   DOI
7 D. Jane, The Ricci flow does not preserve the set of Zoll metrics, Diffierential Geom. Appl. 54 (2017), part B, 397-401. https://doi.org/10.1016/j.difgeo.2017.07.005   DOI
8 R. Michel, Problemes d'analyse geometrique lies a la conjecture de Blaschke, Bull. Soc. Math. France 101 (1973), 17-69.   DOI
9 A. Pressley, Elementary Diffierential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2001. https://doi.org/10.1007/978-1-4471-3696-5
10 A. Weinstein, On the volume of manifolds all of whose geodesics are closed, J. Diffierential Geometry 9 (1974), 513-517. http://projecteuclid.org/euclid.jdg/1214432547   DOI
11 O. Zoll, Ueber Flachen mit Scharen geschlossener geodatischer Linien, Math. Ann. 57 (1903), no. 1, 108-133. https://doi.org/10.1007/BF01449019   DOI