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FRAME MULTIRESOLUTION ANALYSIS
HonGg OH KM AND JAE KUN LM

ABSTRACT. We generalize bi-orthogonal (non-orthogonal) MRA to
frame MRA in which the family of integer translates of a scaling func-
tion forms a frame for the initial ladder space V. We investigate the
internal structure of frame MRA and establish the existence of a dual
scaling function, and show that, unlike bi-orthogonal MRA, there ex-
ists a frame MRA that has no (frame) ‘wavelet.” Then we prove the
existence of a dual wavelet under the assumption of the existence of
a wavelet and present easy sufficient conditions for the existence of a
wavelet. Finally we give a new proof of an equivalent condition for
the translates of a function in L2(R) to be a frame of its closed linear
span.

1. Introduction

We generalize the model of bi-orthogonal (non-orthogonal) multireso-
lution analyses (MRA) of Feauveau [9] by allowing the collection of the
integer translates of the scaling function of the MRA to be a frame of
the initial ladder space V;. The possibility of such generalization was first
observed by Benedetto and Li in [1] and by Li in [13]. Given an orthogo-
nal frame MRA ({V;}, ¢) (see Definition 3.1), their idea is to consider an
idempotent Ap : V1 — Vg of the form Ao f = >~ (f, T"¢*)T"p. Everything
works more smoothly if we follow Feauveau’s model more thoroughly. For
example, existence of a dual scaling function and a dual wavelet follows
very naturally from Definition 3.1 by considering commutation relations of
certain operators. See Proposition 3.11 and Proposition 3.14. These and
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the related results also shed some light on bi-orthogonal MRA situations.
Almost everything, except the existence of wavelets, that can be said in
a bi-orthogonal MRA can also be said in a frame MRA with even more
transparent proof.

The paper is organized in the following manner. Preliminary discus-
sions are gathered in Section 2. In Section 3 we develop the theory of
frame MRA by extending Feauveau’s non-orthogonal MRA, and investi-
gate the internal structure of a frame MRA. Unlike orthonormal MRA
or bi-orthogonal MRA, the existence of a wavelet in the initial difference
space Wy is not readily guaranteed. Actually, there exists a frame MRA
that has no frames of translates of a single function for Wy (Example
3.21). We give sufficient conditions for the existence of a wavelet for Wy
(Theorem 3.19 and Theorem 3.20). In Section A we present a new proof
of an equivalent condition for the translates of an element of L*(R) to be
a frame of their closed linear span.

2. Preliminaries

In this section we fix some notations, introduce some terminologies that
will be used throughout the discussion, and collect some preliminary facts.

Let 7 be a separable Hilbert space over C, and let I be a countable
index set.

DEFINITION 2.1. {f;}ier C H is a Riesz basis (with a pair of Riesz
bounds A and B) if it is a complete (total) sequence and if there exist A
and B with 0 < A < B < oo such that for any {c;}ier € £2(1)

AZ leil? < |l Zcifi“2 < BZ il
iel iel il
{#:} is a Bessel sequence (with a Bessel bound B) if there exists B < 00
such that for any f € H,

SIS < BISIE

el
A Bessel sequence {f;} is a frame (with a pair of frame bounds A and B)
if there exists A > 0 such that for any f € H,

ANFIP < D IF

iel
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The bounds in the above inequalities are not unique. The infimum
of all upper Riesz bounds is called the optimal upper Riesz bound. The
optimal upper frame bound and optimal Bessel bound are defined in a
similar way. Likewise, the supremum of all lower Riesz bounds is called
the optimal lower Riesz bound, and the optimal lower frame bound is
similarly defined.

For a frame {f;}, the frame operator S : #H — H, Sf = > .(f, fi)fi
defines a bounded positive invertible operator. Suppose now that {f;} is
a Bessel sequence and {e;} the standard orthonormal basis of ¢2. Then we
can define the so-called pre-frame operator [11}:

Q: 0 —H, Qe:=ficl.

Then ||Q|| < VB, where B is a Bessel bound. The proof of the following
characterization of frames can be found in [11] or [4].

THEOREM 2.2. A sequence {f;} is a frame if and only if the pre-frame
operator is bounded and surjective.

If {f;} is a frame, then S = QQ*, where * denotes the adjoint. Since S
is positive and invertible, for any f € L?(R), we have a frame expansion,
F=8Sf =3 (f,S7 fi) fi- We call {S~'f;} the dual frame of {f;}. It
is also a frame, and its dual frame is the original frame. A frame may be
over-redundant. Therefore the coefficients in an expansion with respect
to a frame are not unique.

DEFINITION 2.3. A sequence {f;} £>-generates # if for any f € H there
exists (a;) € £2 such that f = >, a;f;, where the sum converges in the
norm topology of H.

LEMMA 2.4. A Bessel sequence of a subspace of a Hilbert space is a
Bessel sequence of the entire space, a subsequence of a Bessel sequence
is a Bessel sequence, and the image of a Bessel sequence by a bounded
operator is a Bessel sequence. A Bessel sequence satisfies the upper Riesz
basis condition of Definition 2.1.

PROOF. All the statements except the last one is trivial. The proof of
the last statement can be found in [15]. O

LEMMA 2.5. If a Bessel sequence £*-generates H, then it is a frame for
H.
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ProoF. The pre-frame operator is bounded and surjective. The lemma
follows by Theorem 2.2. See also Lemma 4.4 in [4]. a

Throughout the rest of the discussion we let {e,}ncz denote the stan-
dard orthonormal basis of £2(Z). Let 7 be the bilateral right-shift operator
such that 7 : 2(Z) — €3(Z), Te, = epy1. For a > 0,3 € R we define the
dilation operator D, via D, : L*(R) — L*(R), (Do f)(t) := o!/?f(at), and
the translation operator Tj via Ty : L*(R) — L%(R), (Tf)(t) := f(t - B).
We let T := T; be the integer translation and D := D, the dyadic dila-
tion. Then for each n € Z,8 € R, the following commutation relations
hold (Lemma 3.2 {8]).

(2.1) DT = Ty-ngD", TsD"™ = D"Tpnp.

All of these operators are unitary. Notice that 7% = T-! = T_; and
D* = l)n1 = D1/2.

For any f € L*(R) let f;x(z) := (D'T*f)(x) = 29/2f(27z — k).

We use the following form of the Fourier transform: for f € L?(R) N
LY(R), (F)(t) = f(t) == [g f(x)e"®*=dz, and extend F to a unitary
operator from L%(R) to L*(R).

Let T := R/Z denote the compact group which can conveniently be
identified with the interval [0, 1). For f € L}(T), its k** Fourier coefficient
is defined to be [; f(t)e?™* dt. We let A'(Z) denote the vector space of
the Fourier coefficients of the elements of L*(T). Notice that (a,) €
A'(Z) if and only if Y, a,e”?™ € L*®(T), and that ¢}(Z) C A'(Z). All
summations without explicit description of the index set is understood to
be over Z.

DEFINITION 2.6. Let A and B be two closed subspaces of a Hilbert
space H. We say that they are complementary subspaces if AN B = {0}
and A+ B = H. In this case we write X = A + B. Moreover, if A L B,
then we write # = A @ B. We write H = +¢1S5;, where I is a countable
index set, if each S; is a closed subspace of H, S; N S; = {0} (i # j), and
for each f € H there exist f; € S; such that f = >, f;, where the sum
converges in H.

DEFINITION 2.7. An idempotent E is a bounded operator satisfying
E?=FE.
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If F is an idempotent, then it has closed range and its range and kernel
are complementary subspace of H. Conversely if A and B are complemen-
tary subspaces of a Hilbert space ‘H, then there exists a unique idempotent
whose kernel is A and whose range is B. If E is an idempotent, then so
are E* and I — E. See (7).

3. Frame multiresolution analysis

In this section we extend Feauveau’s model of non-orthogonal multires-
olution analysis [9].

DEFINITION 3.1. ({A;};ez, ) is said to be a frame multiresolution

analysis (FMRA) if:

(1) A;: L*(R) — L*(R) is an idempotent;

(2) V; € Vi1, Zjy1 C Zj, where V; :=ran A;, Z; = ker A;;

(3) D(V;) = Vis1, D(Z5) = Zjna;

(4) TAy = AoT;

(5) There exists an ¢ € V} such that {T"¢} is a frame for Vj;

(6) O, = L*®R), nV; = {0}.
If each A, is an orthogonal projection we say that it is an orthogonal frame
multiresolution analysis (OFMRA).

REMARK 3.2. (3) is equivalent to DA; = A;1D, and (4) implies that
T (Vo) = Vp and T(Zy) = Zy (p-157 of [9]). Notice that, for each j € Z,
A; = DiA,D3. Suppose j > 0. Then A;T = D AgD~T = DIAT? D~ =
D’T? AuD~ = TDiA,D~7 = TA; by (2.1). Therefore A;T = TA; for
each 7 > 0.

REMARK 3.3. We now show that (5) is equivalent to:

(5') There exists a bounded operator & : Vy — 1?(Z) which is coercive,
i.e., there is @ > 0 such that ||§yf|| > a||f|| for each f € Vj, and it satisfies
the commutation relation &T = 7€, on V4.

Recall that an operator between Hilbert spaces is coercive if and only
if its adjoint is surjective [14]. Suppose that (5') holds. And let ¢ =
€ieo. Notice that TE = &7 and that & : 2(Z) — V; is surjective.
Een = Emep = TMEjeg = T"p. Hence by Theorem 2.2 & is the pre-frame
operator of the frame {T™y : n € Z} for V;. Suppose, on the other hand,
that {T"p : n € Z} is a frame for V; for some ¢ € V. Then by Theorem
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2.2 there exists a surjective {y : £2(Z) — V; such that (e, = Ty for each
integer n. Then, for each n, T(ye, = TT% = T g = (yens1 = (oTen.
Hence T'(y = (o7. Since (j is coercive, ¢ is the desired operator.

In Feauveau’s model of non-orthogonal MRA, & in (5') is assumed to
be a topological isomorphism satisfying the commutation relation in (5'),
which guarantees the existence of a Riesz basis of translates for ;. Hence
Definition 3.1 is a generalization of his model.

We call any ¢ € V, whose integer translates generate a frame for Vj, a
scaling function of the FMRA. It is easy to see that {DiT*p}, is a frame
for V; for each j with the same frame bounds.

Notice that the definition of OFMRA can be given as follows [1]. ({V;}, ¢)
is an OFMRA if {V;} is a nested sequence of closed subspaces of L*(R)
and ¢ € Vj such that: UV; = L*(R),NV; = {0}; D(V;) = V;,, for each j;
T (Vo) = Vo; {T™p} is a frame for Vj. A construction of such an OFMRA
is relatively easy. We cite the following construction of an OFMRA which
is Theorem 4.6 of [1] for the sake of later reference.

PROPOSITION 3.4. Suppose ¢ € L*(R). Define V; := span{D'T"¢},.
If it satisfies the following properties, then ({V;}, ¢) is an OFMRA:

e |¢| is bounded away from zero a.e. on a neighbourhood of zero;

o {T"p} is a frame of Vj;

e There exists Hy € L™(T) such that ¢(v) = 1/v/2Hy(v/2)@(v/2).

Definition 3.1 has an added freedom of choosing the kernels Z,’s of A,’s
other than le’s. We now consider the problem of how to exploit this
freedom.

PROPOSITION 3.5. Suppose that an OFMRA ({V;}, ) is given. Let Z,
be any complementary subspace of V, satisfying T'(Zy) = Zy and D(Z,) C
Zy. Let Ay be the unique idempotent satisfying ran Ay = Vj and ker 4y =
Zy. Define A; := DIAgD~? and Z; := Di(Z,). Then ({A;},¢) forms an
FMRA.

PROOF. First notice that such Z always exists. V;- will do. (5) and
(6) of Definition 3.1. are readily satisfied. By its form each A; is an
idempotent.

Obviously, ran A; C D¥(Vy) = V;. If f € V; = Di(V,), then there exists
g € Vp such that f = D7g. Hence A;f = A;Dig = D’ AyD™7D’g = Dig =
f. Therefore, ran A; = V;. If A;f =0, then D’A¢D7f =0. So D7/ f ¢
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ker Ay = Zy, since D’ is unitary. Hence f € D¥(Zy) = Z;. If f € Zj,
then there exists g € Z, such that f = D’g. So, A;f = D'A)D7Dig =
DiAyg = 0. Hence ker A; = Z;. The condition D(Zy) C Zy implies that
Z;y1 = DID(Zy) C D¥(Zy) = Z;. So, the condition (2) follows.

By Remark 3.2 (3) follows from DA; = DD AyD~? = D' A,D~971D =
Aj+1D.

It remains to check the condition (4). For any f € L*(R), f = fi + fa,
where f; € V and fy € Z;. Notice that Tf; € V; and Tf, € Z;. Hence
TAof = Tf and ATf = Tfi. So TAy = AoT. O

Throughout the rest of this section we assume that an FMRA ({4;}, ¢)
is given.

THEOREM 3.6. ({A}}, Ajp) is also an FMRA, called the dual FMRA.
In this case, we let V' := ran A} = Z]J- and Z} :=ker A} = Vi

PROOF. The verifications of (1) to (6) except (5) of Definition 3.1 are
given in the proof of Theorem 2 in [9]. We show that (5) holds. Let
o = A%EL, where & is as in Remark 3.3. Then (, : £2(Z) — V. We show
that (o is surjective. If f € V, then there is g € L?(R) such that f = Ajg.
Decompose g such that g = g;+go € Vo@®V;-. Notice that Vi- = Z§. Hence
f = Atg = Atg,. Since g; € V, and &} is surjective, there is e € £2(Z) such
that g, = £je. Hence e = f. Hence by Theorem 2.2 {(pe,} is a frame
for V. Notice that (or = A§&r = AT = TAs = T¢o. Therefore
Cen = (T = T AL eo = T Agp. Hence {T™Ajp} is a frame for Vy. [

We collect some immediate consequences of Definition 3.1.

ProposITION 3.7. (1) ||4;] = A&l IT — A;j]l = I — Axl|, for any
5,k €Z.
(2) |f — A;fll = 0 as j — oo for any f € L*(R).
(3) AjAx = AcA; = Amin(ik),
(I—- AT = Ap) =T - AT — Aj) = I — Anmax(ib)-
(4) A;f — Acf € Znin(i k) N Vinax( k)
(5) NZ; = {0}.
(6) UZ, = IA(R).

PrROOF. (1): For any j, A; = D*A;j;1D. Since D is unitary, ||4;]| =
”Aj+l”' Slmllarly, I - A]‘ - D*(I - AJ+1)D, SO ”I - A]H = "I — Aj+1“.
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(2): Let P; be the orthogonal projection onto V;. Then ||f — P;f|| — 0
as j — oo and ||P;f|| — 0 as j — —oo by (6) of Definition 3.1. Hence

If = A fIl < MIf = Bifll + I1Pf — Ajfl
= |1f = Bifll+ 145555 ~ Asf
< W =Bl + AP f = F
= 1+ [ 4IDIFf - £l
= (L+ [4l)IBSf - 71
— 0, asj — oo by (1).

(3): If j > k, then A;jAcf = Aif, since Vy C V;. If j < k, then
f=Af+f—Af. So, Aif = Aj(Acf + f — Axf) = AjAxf since
f—Aif € Zx C Z;. Hence AjA; = AxA; = Amin(jr)- On the other hand,
(I - Aj)([ - Ak) =T—A;— Aj + AjAk =1- Amax(j,k)- Since A]' and A;
commute, so do I — A; and I — Ay.

(4): If j > k, then Ak(Ajf - Akf) = 0 by (3) So Ajf — Arf € Z.
Clearly, it is in V; since Vi, C Vj.

(5): If f € NZ;, then A;f =0 for any j. Thus ||f|| = ||f — A;f]| = 0
as j — oo by (2). Hence f = 0.

(6): If f € (UZ;)* = (UZ;)t =NZ} =NV}, then f = 0 by Theorem

3.6.
O
We now consider bi-orthogonal wavelet decomposition of L(R).
DEFINITION 3.8. For each j € Z, let W; := V;;,; N Z; and W) =
VianNZ:.

These are.closed subspaces of L(R). If A; is an orthogonal projection,
then Z; = V', Hence W; = V;4; © V; := the orthogonal complement of
‘/J' in ‘/j-l—l'

PROPOSITION 3.9. (1) V11 =V;+ W, and V}, =V} + W,
(2) Zj = VVJ + Z]'+1 a.nd Z; = W'Jf‘ + Z;—{-l'
(3) W; N Wi = {0} and W} N W = {0} if j # k.
(4) W = (I - A))(Visa) and W} = (I — A5)(V},y).
(5) W; = D¥(Wp) and W} = DI(W}).

PROOF. By duality we only need to prove the first part of each state-
ment.
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(1): For any f € Vi1, f = A;f + (I~ Aj)f. So (I-A)f=f-A;f€
Zj N V}+1 = Wj. Since Wj N ‘/J = {0}, ‘/j+1 = ‘/J + Wj.

(2) For f S Z]’ f = Aj+1f+(I—Aj+1)f. So A]'+.1f = f‘— (I—A]'_H)f S
‘/j+1 N Zj = Wj. Since Wj N Zj+1 = {0}, Zj = Wj + Zj+1.

(3) If <k, then Wj C ‘/j+1 and W, C Z; C Zj.H. Hence VVJ NW, =
{0}.

(4): Trivially, (I — A;)(Vj+1) C V;1uNZ; = W;. Suppose that f € W; =
Vi1 N Z; = Vi Nran(I — A;). Then there exists g € L?(R) such that
f=I~-A4A;)g. Then f =Ajuf =An( - A)g = Ajug — Ajnd;g =
Ajng — AjAjng = (I — Aj)(Ajng) € (I — Aj)Vin.

(5): f € W; if and only if there exists g € Vj41 such that f = (I — A;)g
by (4). Hence DI f = D7I(I — A;)g = (I — Ao)D~7g € Wy. Therefore,
W; = DI(Wy). O

LEMMA 3.10. L2(R) = +Wijcz if and only if for any f € L*(R) ||A; f|| —
0asj— —oo.

PROOF. We prove the ‘if’ part of the statement. Fix f € L?(R). Then

f=Af+{I~A)f
=A_1Aof + (I — AL Aof + A1 — Ao)f + (I — A1)(I — Ao)f
=Af+ (A —A)f+ (A - A)f+ (T - A)f

n
=ALf+ Y (A - A f+ T - A)f.
j=—k+1

By Proposition 3.7, (A;—A;-1)f € W; and ||(I—A,)fll = 0asn — oo.
Hence the series Z?:_k +1(A; — Aj_1)f converges to f as k,n — oo.

Now suppose f = 3_; f; = »_; gj, where the sum converges in the norm
topology and f; and g; are in W;. Then 0 = ) .(f; — g;). So for any &,
0=A(X;(fi—=9)) = X5 Ac(fi—95) = 25 Axfi—95) = 25 (Fi— 95,
since W; = Z; N Vj41. Hence 0 = (Apr1 — Ae)(Q_;(f5 — 95)) = fe — ge. So
the series expansion is unique.

We now prove the ‘only if’ part of the statement. Let f € L*(R) be
arbitrary. Then we have a unique expansion f = Zj f; with f; € W;.
Then Aif; = 0 for each j > k. Hence Axf = Ax(3_ ;15 i) if k < 0. So
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A fIl < [l Al ] Z|j|>|k| Fill = Aol I Z|j[>|k| fill = 0 as k — —o0, since

the series converges. O

Later, we will see that the condition that A;f — 0 as j — —oo for each
f holds in any FMRA.

The following proposition shows the existence of a dual scaling function,
and thereby generalizes Proposition 9 of [9].

PROPOSITION 3.11. There exists ¢* € Vj, called a dual scaling func-
tion, such that, for each j,

Aif =Y (f,D'T*¢")D'T*o  and
k

A f = (£, D'Tro) D’T*p".
k

Moreover, {DT*y* : k € Z} is a frame for V;, for each j.

PRrROOF. Let S; : V; — V; be the frame operator with respect to the
frame {T"p}. Then SyT = T'Sp on Vj by Proposition 4.7 in [1]. Hence
TSy! = S3'T on Vp. Then, since Ayf € Vi,

Aof = (Aof, S5 T )T e
=Y (Af, TS5 )T
=3 (f, 4TS5 )T
=Y (T S )T
=) (£, ") T,

where ¢* = A%Sy'y. By Remark 3.2 A; = DiAgD™7 for any j € Z.
Hence
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Ajf = D' AD f
= D'() (D7 f,T"p")T"p)

n

= Z( f, DT " YD T™ .

Notice that {T"¢* = T"ALS; ' = AjSy'Tre} C V; is a Bessel se-
quence for L?(R) (hence for V) by Lemma 2.4.

Hence the operator Byg := ) (g, T"¢)T"¢* is bounded by Lemma 2.4
and Definition 2.1. For each f,g € L*(R),

(Aof,9) = O (£, T"") T, 9)
= (£, TN T"p,9)
= (£, (9, T"p)T"¢")

= <f) BOQ)

Therefore Ajg = ¥,.(g, T"¢)T"¢*. Since A} = D’A;D~7, we have, as
above, that A3g = Y, (g9, D'T"p)DiT"p*. For any g € Vi, g = Ajg =
3.9, T )T™p*. Hence {T™p*} is a Bessel sequence that ¢2-generates
Vo . Therefore, it is a frame for Vi by Lemma 2.5. By a simple dilation
argument {D’T"p*} is a frame for V. O

Using the previous proposition we have a decomposition of L%(R) via
Wy’s.

PROPOSITION 3.12. L*(R) = +;ezW; = +;ezW;. In particular, for
any f € L*(R), f =5 ,(Aj — A))f = X ;(A5,, — A})f, where the sum

converges in L*(R).

PROOF. According to Lemma 3.10 it is enough to show that A;f — 0
as j — —oo for each f. Since simple functions are dense in L?(R) and
| 4;]| = || Ao|| for any j, it is enough to show that the convergence condition
holds for any simple functions f. By linearity we may assume that f is
a characteristic function . Since {T*p} is a frame for V;, there exist
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0 < A < B such that A||f||? < 2kl (£, T*p)|? < B||f||? for any f € V.
Let 7 > 0.

A= I? = D742 = 140D |
< 2 D HAD £, TH)
k
= LD AT
= 3 SN0 T
=G SO A

32| [ R

<33 06-0) / 27| (Ase) (27t — k)[R dt

k

boas [ ey
= * t t
A k /Z‘ja—k Otp

—0as j — oo.

The last convergence follows by the dominated convergence theorem.

The remaining statements hold by the argument in the proof of Lemma
3.10 and by duality. a

PROPOSITION 3.13. For any j, V, = "i“k<jWk and Zj = ‘i’ijWk'

PROOF. Suppose f € V;. By Proposition 3.12 f = >, (Axr1 — Ar)f-
Then f = A]f = AJ' Zk(Ak+1 —Ak-)f = Zk<j(Ak+1 — Ak)f, where we used
Proposition 3.7 (3). Since (Axy1 — Ax)f € Wy by Proposition 3.7 (4) and
Definition 3.8, V; C +4<;W. On the other hand, if f = Y, (Ax1—Ax)f €
Zj, then Y, .(Ary1 — Ag)f = 0 according to the previous calculation:
Hence f = > ,,;(Ars1 — Ar)f. This shows that Z; C +4;Wi. By
definition +4;Wy C V; and +45;Wi C Z;. 0O
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Under the assumption that a frame of translates for the initial difference
space W, exists we have the following ‘weak’ wavelet expansion theorem.

PROPOSITION 3.14. If there exists 1 € Wy such that {T™)} is a frame
for Wy, then there exists ¢* € W{ such that, for each j,

(3.1) (Ajw = A))f = D (f, D’T™§")D'T™),  and
(A541 — A f = ) _(f, D'T™) DT,
where the sum converges in L*(R). Moreover, for each j € Z, {D’T*+ :

k € Z} is a frame for W; and {D'T*y* : k € Z} is a frame for W;.
Consequently, for any f € L?(R),

F=3 2 (DT DT =) Y (f, D'T™) DT,
i n 7 n

where the iterated sum, not the double sum, converges in L?(R).

PROOF. Notice that T (W,) = W, by assumption. Let Sy, : Wy —
Wy be the frame operator with respect to {T™¢}. Then exactly by the
same argument as in Proposition 4.7 of (1] Sy, T = T'Sw, on W,. Hence
Sw,T~! = T1Sw, on W,. By Remark 3.2 A; — Ay commutes with T’ and
so does (4; — Ap)*. Hence

(A1 — A0)f = (A1 — Ao)f, Sy T™$) T
- zn:«A1 — Ao)f, T"Sptp)T™
- Xn:( £ (A1 — Ay TSyt ) T™p
= i(f, T™(A1 = Ao)" Sy ) T
T

where y* := (A; — Ao)*S;th)zp € W;. Therefore,
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(Aj1 — A))f = D¥(AL - Ag)D7 f
= DIy (D7, T T

= S, DT DT,

By repeating the argument in the proof of Proposition 3.11 we see that
(A5 — ADS = 2. (f, T")T™p*, and that {T7*} is a frame for Wy.
A dilation argument shows that {D?T™y} forms a frame for W;, since
W; = D¥(W,) by Proposition 3.9. By duality {D’T™*} forms a frame
for W;. The convergence of the iterated sum follows by Lemma 3.10 and

Proposition 3.12. O

The following proposition gives a condition under which the above
‘weak’ wavelet expansion can be a genuine wavelet expansion.

PROPOSITION 3.15. If {T*y} is a frame for Wy and if {D’T* : j, k €
Z} and {DIT*y* : j k € Z} are both Bessel sequences of L*(R), where v*
is any element in L?(R) that satisfies (3.1), then they are frames of L*(R).

PROOF. See the proof of Theorem 5 of [6]. O

See [5] for characterizations of Bessel sequences of the type {D7T*y}
via decay and oscillation of 1.

REMARK 3.16. Suppose that we are given an OFMRA. So A4; = A} =
P;, an orthogonal projection. If there exists ¢y € Wy such that {T"}
forms a frame for Wy, then W; = W} and L*(R) = &;W;. Let ¢* :=
(P, — PO)S;Vi't,b as in the proof of Proposition 3.14. Then by Theorem 5.11
of [1] and Proposition 3.14 {DT*y : j,k € Z} and {D’T*y* : j,k € Z} are
frames of L*(R). Hence, for each f € L*(R), f = 3, (f, D’T**) D'T*y =
>2ix(f, DIT*4p) DIT**, where the double sum converges in L*(R).

Suppose, on the other hand, that we are given an FMRA and that the
integer translates of a scaling function ¢ is a Riesz basis for V;. (So we are

given Feauveau’s non-orthogonal MRA). Then there always exists ¢ € W,
such that {T™¢} is a Riesz basis of Wy (Theorem 13 [9]).

Given an FMRA a natural question arises whether there exists ¥ € W)
such that {T™) : n € Z} is a frame for W,. The answer is negative as
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will be seen by Example 3.21, thereby exhibiting a great constrast to the
ordinary bi-orthogonal MRA case. See Remark 3.16. Benedetto and Li
gave a sufficient condition for the case of an OFMRA (Theorem 5.6 of
(1]). Kim and Lim [12] and Bendetto and Treiber [2] found the equivalent
conditions for the existence of wavelets in an OFMRA, independently, with
different methods. Kim and Lim ([12]) provide an explicit construction
of the wavelet of an OFMRA, if it exists, and prove that an OFMRA
always has 91,9, € V; such that {T™¢,T'%; : n,l € Z} is a frame
for Wy and constructs such 9; and v, explicitly. We now give a simple
sufficient condition for an FMRA to have a frame of translates for W,
Since ¥y C V; and since { DTy} is a frame for Vj, there exists H € L*(T)
such that ¢(y) = 1/v/2H(v)(7y/2). This H is not unique, reflecting the
non-uniqueness of the coefficients in a frame expansion. We can find,
however, at least one canonical H in the following manner.

LEMMA 3.17. Let ®(v) := >, |¢(y + n)|?, N:= the zero set of ® in T
modulo measure zero sets and M := T\ N. Let H(7y) := v2(3, ¢(2y +

20@(y +1))-(1/2(7))-xm(y). Then H € L®(T) and ¢(v) = 1/v2H(v/2)
¢(v/2).

PRrOOF. First notice that by Theorem A.3 there exist positive con-
stants A and B such that A < & < B on M. Hence by Cauchy-Schwarz
inequality

<\/_Zl<p(27+2l)<p('7+l))l) 37
< \/_<I>(27)1/2<I>('y)1/2¢)( )XM(”Y)
S (2§)1/2

Hence H € L*°(T).

Let S; be the frame operator with respect to a frame {DT™p} for V;.
Then, for f € Vi, S1f =3 (f, DT"0)DT" = DY (D7 f, T"p)T"p =
DSyD!f, where S, is the frame operator with respect to a frame {T”cp}
for Vy. Since D™Y(V}) = Vg, S; = DSeD~! on V;. Hence S;! = DS;!D™!
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on V. SoS1‘1D=DS1‘1 on V. Since p € V, C Vi,
¢= (p,S'DT"¢)DT"p

=D (. DS'To)T"p

=D (o, DT"S; o) T"p

Hence ¢(v) = 1/vV2(3, (0, DTS5 p)e >™1/2)p(v/2). If we let H(y) :=
3. {w, DTSy p)e~2™m, then ‘P(’Y) = 1/v2H(v/2)$(/2).

By Theorem 4.8 of [1] Sy (p('y) @(y) - 1/®(7) - x5(7v), where M :=
UnezM + n. Therefore

H(y) =Y (p, DTS5 p)e ™

n

-0 ToSy lp)e s
- Z \/_/ (2§)¢(§-)XM §)627rm§ df) —2miny

=AY [ ot g xale e
- 055 [ ot + PGt e

= ;(\/Q /0 (El: B(2€ + 21)5(??7))%’(%28”% de)e-2min

where we used the dominated convergence theorem, whose use is guar-
anteed by the first part of this proof, in the last equality. Therefore by
Plancherel theorem we have H(v) = v2(}, #(2y+20)@p(y + 1)) - (1/®(7))-
xm(7)- O

We need the following lemma which is proved in the proof of Theorem
5.4 of [1].
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LEMMA 3.18. Suppose f € L*(R). If 3 |f(t+n)]> € L®(T) and
(an) € £3(Z), then g(t) := (3 ane®™™) f(t) € L*(R) and g(t) = 3 ane®™
f(t), where the convergence is in L*(R).

THEOREM 3.19. Let v := (I — Ag)Dy. If there exists (a,) € A'(Z)
such that

(3.2) (I — Ao)DTp = a,T™,

where the convergence is in L*(R), then {T™) : n € Z} is a frame for Wj,.

PROOF. By (4) of Proposition 3.9 ¥ € W,. For any k € Z, Ty =
TH(I — Ag)Dy = (I — A))T*Dy = (I — Ag)DT%* . Therefore {T™y} is
a Bessel sequence for L?(R) by Lemma 2.4, since it is a subsequence of a
Bessel sequence. Suppose that f € Wy. Then by (4) of Proposition 3.9
there exists (b,) € ¢2(Z) such that

f=(I-A)D_b.DT)

=) "ba(I — A))DT™p

= Z bon(I — A))DT™ 0 + Y " byna(I — A) DT
n n

=D 0TI = A)Dp + ) b T"(I — A0) DTy
n n

- Z bonT™ + Z bon 1 T™(I — Ag)DTp.

Let g := E:banT"(I - ZO)DT(‘D. Then, by (3.2),
9 = Qb e ™) (Y axe ™ )gh(v)
n k

= Boaa(V)A(V)%(7)
= C(7)¥(v),

where Boyy(7) := Y, banr1e72™ € LX(T), A(y) := 3 axe > € L>(T),
and, consequently, C(7y) := Boay(7)A(y) € L*(T). Let (c,) € £3(Z) be the
Fourier coefficients of C(y). Then C(y) = 3, c,e™> in L*(T). Since
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{T™p} is a Bessel sequence, 3., [¥(y + n))* € L®(T) by Corollary A.4.
Then by Lemma 3.18 we see that 3 c,e 24 (y) converges in L*(R).
Hence by taking the inverse Fourier transform of §, g = Y, ¢,7™%. Hence
there exists (d,) € £*(Z) such that f = ), d,T"¢. Therefore {T")}
2%-generates Wy. Thus {T™} is a frame for W, by Lemma 2.5. d

We now give a sufficient condition for (3.2), and hence a sufficient
condition for the existence of a (frame) wavelet.

THEOREM 3.20. Suppose H € L®(T) satisfies
(3.3) |H(v)— H(y+1/2)]>€¢ ae T
for some positive €, where H satisfies ¢(vy) = 1/vV2H(v/2)p(v/2). If we

define
e (H(y/2) + H(y/2+1/2))
34 Aly) = ,
ey O = T HGR) - Hap )
then the Fourier coefficients of A satisfy (3.2).

PROOF. By construction A € L*(T). Hence its Fourier coefficients are
in A’'(Z). Notice that (3.2) holds if and only if

(I = A))DTp = a,T"(I - Ao) Dy
= an(I - A)DT*"p

(3.5) =(I- 4> anDT™.

This holds if and only if DTy — 3" a,DT?"p € ker(I — Ay) = ran Ay =
Vo. Since {T"p} is a frame for V}, (3.2) holds if and only if there exists
(bn) € £%(Z) such that

(3.6) DT - a. DT = b T"p.

By taking the Fourier transform of (3.6), (3.2) holds if and only if

(1/V2)e™p(y/2) = (1/V2) Y ane ™™™ p(v/2) = Y bne™ "™ 3(7)
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= (1/V2) Y bue™ ™™ H(v/2)3(7/2)-

Hence (3.2) holds if and only if there exist A € L*(T) and B € L*(T)
such that

(€™ + A()p(v/2) = B(v)H(v/2)$(7/2).
This holds if (if and only if when the support of ¢ = R)

(3.7) e + A(y) = B(y)H(v/2) ae R
Since A should be 1-periodic,

A(7) = —e™ + B(y)H(v/2)
=A(y+1)
= e ™ 4+ B(y)H(v/2 +1/2).
Thus B should satisfy the relation:
B(y)(H(v/2) — H(v/2+1/2)) = 2¢™™.
That is,
2e~ ™
B(v) = .
") = Ham - B0+ 17D
Then B € L=(T) c L*(T). It is easy to check that B is 1-periodic. Hence

A(y) = —e™™ + B(7)H(7/2)
2e~"Y
H(v/2) - H(v/2+1/2)
_ e (H(y/2) + Hy/2+1/2)
H(v/2) - H(v/2+1/2)
It is now easy to see that A € L®(T), that A is 1-periodic, and that A
satisfies (3.7). O

— __e—m'y +

H(v/2)

EXAMPLE 3.21. We first give an example of an OFMRA such that W)
has no frames of translates, and then generalize it to an FMRA. Let ¢(y) =
X[-aa(7),1/4 < a < 1/3. By Proposition 3.4 and Theorem A.3 it is easy
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to see that ({V;}, ) forms an OFMRA, with V; := span{ D’T"p},. For ex-

ample, H can be chosen as H(y) = \/—X[_a/z a,/2]( )+ (V) X=1/2,-a)uje,1/2) ()
where a is an arbitrary bounded function. Then Vy = PW|_,4 and
Vi = PW\_3024, Where PW denotes a Paley-Wiener space such that
PWs := {f € L*(R) : supp(f) ¢ S € R}. Hence Wy = V16 V; =
PW\_2,-a)uja20- Suppose there exists ¢ € Wo whose integer translates
form a frame for Wy. Then clearly supp(4) = [—2a,—a] U [a,2d],
and Wy = {f : f(v) = c(M¥(v), ¢ € L*([-1/2,1/2]), 1-periodic }.
Since X(-20,-ajuja,2e) € PW{-20,—a)uja,24], there exists a 1-periodic ¢ such that
X[-26,—a)ula;20) (V) = c(’y)zﬁ(fy). Notice that [—2a, 2a—1] C [—2a, —a]U]a, 24]
and [—2a,2a — 1]+ 1 = [-2a + 1, 2a] C [-2a, —a] U [a, 2a}, since a < 1/3.
Hence, on [—2a,2a — 1], ¢(v) = 1/9(7) = e(y + 1) = 1/(y+1). Let
f () = X[-20,2a-1)(7) — X[-20+1,20)(7)- Since f € W, there exists 1-periodic
b such that f(y) = b(Y)¥(y). If v € [2a,2a — 1], then 1 = f(y) =
b(y)(y) = b(y + 1)¢(y + 1) = f(v + 1) = —1. This contradiction shows
that Wy has no frames of translates of a single function.

Actually we have a stronger result: If ({4;}, ¢) is an FMRA such that
ran A; = Vj := PW|_giz0iq With 1/4 < a < 1/3, then W} has no frames of
translates of a single function.

First notice that Wy = ViNker A by definition. Then V} = PW|_3;9, =
Vo+Wo = PVV[_a a]+W0 by Proposxtlon 3.9. Since Fourier transform is uni-
tary, we have PW[ %,2a] = PWH q+ Wo, where X 1= {f:feXx}) Sup—
pose there exists ¢ € Wy such that {T™} is a frame for W;. Then Wo
{c(MP() : ¢ € L*{[—1/2,1/2]), 1-periodic }. Obviously [—2a, —a] U
[a,2a] C supp(lzz). Since X(-20,-a)uja,20] € PW|-2424], there exist 1-periodic
b,c € L*([—1/2,1/2]) such that X{-s,-ajuja.2)(7) = b(V)X[-a.a (V) +c(1)P (7).
This implies that ¢(7)¥(y) = 1 on [—2a, —a] U [a,2a]. Notice that, since
a<1/3,[-2a,2a—1] C [-2a,—a] and [~2a,2a—1]+1 = [~2a+1,2a] C
la, 2a]. Hence c(7)(v) = 1 = c(y+1)$(y+1) = c(7)$(v+1) on [-2a, 20—
1] SO¢( ) ¢(7+ ) [ 2a, 20‘_1] Letf(’Y) ‘= X|-2a, a]"'X[aZa]e
PW[ 20,20- Then there exist 1-periodic d,e € L*([—1/2,1/2]) such that
F() = d()X1-aa (7) +€(1)$(7). Then, for v € [~2a,2a~1] C [~2a,—a],
1= f(v) = eMb(r) = ey + D)(y +1) = d(y + Dxjaa(y +1) +e(y +
1)Y(y+1) = f(y+ 1) = —1. This contradiction proves our assertion.
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Appendix A. Frames of integer translates

In this section we give a simple proof of Lemma 3.3 of [13] (1-dimensional
version of Lemma 3.53 of [3]), present a new proof of a stronger version
of Theorem 3.4 of [1] (1-dimensional version of Theorem 3.56 of (3]), and
finally prove Corollary A.4 which was used in Section 3. Theorem A.3 was
proved independently by several authors with varying methods. Biblio-
graphic information on Theorem A.3, including this manuscript, can be
found in [2].

Let ¢ € L%(R) and V; := span{T¥p}icz. It is curious to know when
{T*p}rez is a frame of V,. Let ®(v) := 3, |@(y+ k)|%. Then it is easy to
see that ® € LY(T).

LEMMA A.1. If {T"p} is a Bessel sequence (for V,), then ® € L*(T).

PRrOOF. Note that {{p, T*p)} € €3(Z). The result follows from the
Plancherel theorem for Fourier series, since the k** Fourier coefficient of

® is {{p, T*p)}. O

Compare the above Lemma with Corollary A.4.

The proof of the following lemma in [13], [1] and [3] is quite technical.
We present an elementary proof. Notice also that we slightly weaken the
hypothesis in the sense that unlike as in Lemma 3.3 of 1] ® € L*(T) is
established in the course of the proof.

LEMMA A.2. {T*p} is a frame of V; with bounds A and B if and only
if ® € LY(T) and

(A1) A / O Pa(y) dy < / O(m)1Pe () dy < B / O () dy

for each trigonometric polynomial ©(v) := Y cre™ 277,

PROOF. By a standard density argument (Lemma 3.52 in [3]) {T*¢}
is a frame for V} if and only if A||f|? < 3, [(f, T*¢)|* < B||f||* holds for
each f € span{T*p}. Let f := >, pcaxT*p, where F C Z is finite. Let
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O(7) := Y rep cre 7. Then

172 = / S TR dt

keF
/IZC e 27rzk'7 d’y
keF
l+1
=Y / NG dy
leZ
- Z/ OM)PIoty + 1P dy
leZ
(A2) - / 0(7) () dv,

where the last equality holds by the monotone convergence theorem.
DT = Z [(f, @)
k
= Z | / )B(7)er™* dy[?
= Z | Z / [B(MPO(y)e™ dnf?
Y / 607 + D7) dy?
koo

=Y / B(7)(7)e¥ dn
k
(A3) - / S(y10()P d,

where the dominated convergence theorem is used in the next-to-last
equality, and the Plancherel theorem is used in the last equality.

If {T*y} is a frame for Vj, then by Lemma A.1 ® € L%(T). Hence (A.3)
is finite for each f € span{T*y}. Therefore (A.1) follows from (A.2) and
(A.3). On the other hand, suppose (A.1) holds and ® € L?(T). Then
again by (A.2) and (A.3) {T*y} is a frame. O
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The following theorem is proved in [1] under the additional hypothesis
that & € L*(T).

THEOREM A.3. {T*¢} is a frame for V} if and only if there are positive
constants A and B such that

(A.4) A<®<B ae onT\N,

where N is the zero set (modulo measure zero sets) of ®. In this case A
and B are frame bounds of {T*y}.

PROOF. The ‘if’ part is as in Theorem 3.4 of [1] (or Theorem 3.56 of
[3]), since (A.4) implies that ® € L>(T).

We prove the ‘only if’ part. Notice that ® € L?(T) by Lemma A.2.
Suppose that ® < Aon E C T\ N, where E is a set of positive measure.
Then we have

A /T Ixs(6) P (t) dt > /T Ixs(t) P2(t)? dt.

We show that this is impossible. Let o,(xz) be the n®* Cesaro sum of
the Fourier series of xg. Then obviously it is a trigonometric polynomial
and 0,(xg)(t) = [; x&(z)K.(t — z) dz, where K, is the n™ Fejer kernel.
Recall that [} K,(x)dz = 1 and that K, is positive. Hence each oy,(x£)(t)
is bounded by 1 on T. Moreover, {o,(x£g)} converges to xg as n — oo in
L?*(T) [10]. Hence there exists a subsequence {o,,(xz)} which converges
to xg pointwise almost everywhere. Hence by (A.1)

A / 0y (x2) (D20 (2) dit < / o, (x2) DO dt.

Since ® € L*(T)N L%(T), the dominated convergence theorem implies that

A / Ixe(t)P2(t) dt < / Ixe(t) P(t)? dt.

This contradicts our hypothesis. Similarly, there is no set of positive
measure on which @ is strictly larger than B. ]

COROLLARY A.4. {T*y} is a Bessel sequence for V; if and only if ® €
L>(T).

ProOOF. This is implicitly contained in Lemma A.2 and Theorem A.3.
O
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