DOI QR코드

DOI QR Code

The reinterpretation and the visualization of Apollonius' symptoms on conic sections

원뿔곡선에 관한 Apollonius의 Symptoms 재조명과 시각화

  • Received : 2012.10.23
  • Accepted : 2013.02.04
  • Published : 2013.02.28

Abstract

The purpose of this paper is to explain and reinterprets Apollonius' Symptoms on conic sections based on the current secondary curriculum of mathematics, present the historical background of Apollonius' Symptoms to teachers and students and introduce visualization proof of Apollonius' symptoms on a parabola, a hyperbola and an ellipse by a new method using dynamic geometry software(GSP) respectively.

Keywords

References

  1. 김향숙, 박진석, 하형수 (2011). 이차곡선을 활용한 정칠각형에 관한 Abu Sahl의 작도법의 GSP를 통한 재조명, 수학교육 50(2), 233-246.(Kim, H.S., Pak, J.S. & Ha, H.S .(2011). The approximate realization of Abu Sahl's geometric construction about a heptagon through GSP using conic sections, The Mahtematical Education 50(2), 233-246.)
  2. 김향숙, 박진석 (2011). 해석기하학개론[제 2판], 서울: 경문사.(Kim, H.S. & Pak, J.S. (2011). Introduction to Analytic Geometry [2nd edition], Seoul: Kyungmoonsa.)
  3. 김향숙, 박진석, 정승달, 고연순, 문동주, 문영봉, 김순찬 (2012). 중등수학교과내용으로 기하학 다시보기[제3판]. 서울: 경문사.(Kim, H.S., Pak, J.S., Jung, S.D, Ko , Y.S., Moon, D.J, Moon, Y.B & Kim, S.C. (2012). Reinterpretation on Geometry through Secondary Mathematics Curriculum Contents [3rd edition] Seoul: Kyungmoonsa.)
  4. 우정호, 민세영, 정연준 (2003). 역사발생적 수학교육 원리에 대한 연구(2), 학교수학 5(4), 555-572.(Woo, J.H., Min, S.Y. & Jung Y.J. (2003). A study on the historic-genetic principle of mathematics Education(2), School Mathematics 5(4), 555-572.)
  5. Boyer, C.B. & Merzbach, U.C. (2000). 수학의 역사(양영오, 조윤동 공역) 서울: 경문사.(원저 1968년 출판).
  6. 장미라, 강순자 (2010). 역사적 고찰을 통한 이차곡선의 지도방안, 수학교육 논문집 24(3), 731-744.(Jang, M.R. & Kang, S.J. (2010). How to teach the quadratic curves through historical overview, Communications Mathematical Education 24(3), 731-744.)
  7. 한인기 (1999). 작도문제의 해결 방법, 수학교육 논문집 9, 153-164.(Han, I.K. (1999). Construction problem's solution method, Communications Mathematical Education 9, 153-164.)
  8. 한인기 (2003). 중등 교사 양성을 위한 수학교육학 및 수학사 강좌에 대한 연구, 수학교육 42(4), 465-480.(Han, I.K. (2003). A study on teaching-learning programs of mathematics education and mathematics history related courses of mathematics teacher of secondary schools, The Mathematical Education 42(4), 465-480.)
  9. 홍성관, 박철호 (2007). 동적기하가 원뿔곡선 문제 해결에 미치는 영향, 수학교육 46(3), 331- 349.(Hong, S.K. & Pak, C.H. (2007). The impact of geometry software on high school students' problem solving of the conic sections, The Mathematical Education 46(3), 331-349.)
  10. Berggren, J.L. (1986). Episodes in the Mathematics of Medieval Islam, Springer-Verlag; New York.
  11. Sinclair, M.N. (1993). Mathematical Applications of conic sections in problem solving in ancient Greece and Medieval Islam, A thesis for the Degree of Master in Simon Fraser University.
  12. Heath, T.L. (1896), Apollonius of perga - Treatise on conic sections edited in modern notation, The conics of Apollonius, Camridge: at the University.

Cited by

  1. 중세 이슬람이 보인 입방배적문제 해결방법들의 재조명과 시각화 vol.30, pp.2, 2013, https://doi.org/10.7858/eamj.2014.012
  2. Pappus 가 보인 일반각의 3등분문제 해결의 재조명과 시각화 vol.34, pp.2, 2013, https://doi.org/10.7858/eamj.2018.016
  3. 삼차방정식의 기하적 해법에 대한 재조명과 시각화 vol.34, pp.4, 2013, https://doi.org/10.7858/eamj.2018.028
  4. 원뿔곡선을 이용한 중세 이슬람의 일반각의 3등분문제의 재조명과 시각화 vol.35, pp.2, 2019, https://doi.org/10.7858/eamj.2019.016
  5. Biot의 원뿔곡선에 관한 conjecture의 재해석 vol.36, pp.4, 2020, https://doi.org/10.7858/eamj.2020.031
  6. 대수와 기하의 수학적 연결성 지도를 위한 Khayyam과 Al-Kāshi의 문제 해결 방법 재조명 및 시각화 vol.37, pp.4, 2021, https://doi.org/10.7858/eamj.2021.026