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A CLASSIFICATION RESULT AND CONTACT STRUCTURES
IN ORIENTED CYCLIC 3-ORBIFOLDS

SAIBAL GANGULI

ABsTrACT. We prove every oriented compact cyclic 3-orbifold has a con-
tact structure. There is another proof in the web by Daniel Herr in his
uploaded thesis which depends on open book decompositions, ours is inde-
pendent of that. We define overtwisted contact structures, tight contact
structures and Lutz twist on oriented compact cyclic 3-orbifolds. We show
that every contact structure in an oriented compact cyclic 3-orbifold con-
tactified by our method is homotopic to an overtwisted structure with the
overtwisted disc intersecting the singular locus of the orbifolds. In course
of proving the above results we prove a classification result for compact
oriented cyclic-3 orbifolds which has not been seen by us in literature
before.

1. Introduction

Contact structures are generally known on manifolds. They are maximally
non-integrable co-dimension one distributions. Contact structures can also be
defined on orbifolds by going to the level of charts and keeping the distributions
invariant under local group actions. Though a lot of work has been carried out
on contact manifolds little is known about contact orbifolds. In this paper we
provide contact structures to compact oriented cyclic 3-orbifolds.

Cyclic orbifolds are orbifolds where the local group acting on an orbifold
chart are cyclic and action on each chart in some atlas is orientation preserv-
ing. The compact 3-dimensional version of these orbifolds are topologically
manifolds and we call them oriented if the manifold is orientable with an ori-
entation. We prove Martinet-like theorem on these orbifolds.

The main idea of the proof is that since the singular locus of the orbifold is a
link we can get a rotationally invariant contact structure transverse to the link
by Eliashberg’s extension theorem or using Martinet theorem for manifolds on
the smooth 3-manifold (the unique smooth structure (up to diffeomorphism) it
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gets by virtue of it topologically being a 3-manifold). Then we prove a classi-
fication result for these orbifolds. We prove any such cyclic orbifold will be a
quotient of cyclic local group actions on the 3-manifold which are global cyclic
group actions along the neighborhoods of the singular link components. By
virtue of this classification the rotationally-symmetric manifold contact struc-
ture near the link induces a contact structure on the orbifold structure. The
above classification has not been seen by us in literature before.

Since the underlying topological space is a manifold and since the contact
structure on the orbifold structure induces a contact structure on the manifold
structure (in this case) we can generalize overtwisted structures, tight structures
and Lutz-twists to these orbifolds. This opens many questions solved in contact
manifold theory to these orbifolds.

Acknowledgement. I thank Professor Mainak Poddar for introducing this
topic. I thank Professor Francisco Presas and Roger Casals (for the contact
structure extension argument) for answering my mails. I thank Daniel Herr for
uploading his thesis [4] and giving me the motivation to carry out this work. I
thank an anonymous referee for helpful suggestions to improve the manuscript.
I thank Harish Chandra Research Institute and Institute of Mathematical Sci-
ences Chennai for my post doctoral grant under which the project has been
carried out.

2. Contact structure

We give a short exposition of contact structures and contact topology for a
detailed exposition the reader may consult [3].

Definition 2.1. A contact structure ¢ in a 2n + 1 dimensional manifold is a
2n dimensional maximally non-integrable plane distribution. In dimension 3 it
means around each point p if we take two locally defined linearly independent
vector fields X, and Y}, lying in ¢, then their lie bracket does not lie in (. We
call the manifold M with a contact structure ¢ a contact manifold (M, ().

Remark 2.1. When the distribution is co-orientable we can define a global form
a such that a A (da)™ is a no-where zero top form of the 2n + 1 dimensional
manifold and the kernel of « is (. In particular, a A (da)” defines a volume
form and hence an orientation. In dimension 3 a contact manifold is always
orientable (See Remark 2.1.12 in [3]).

Definition 2.2. A knot in a 3-manifold M is an embedding of a circle in the
manifold.

Definition 2.3. A knot K in a contact 3-manifold (M, () is called Legendrian
if it is tangent to the contact structure. It is called transverse if it is transverse
to the contact structure.

Definition 2.4. A framing of a knot K in a oriented 3-manifold is a framing
of its normal bundle.
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Definition 2.5. A link in a 3-manifold M is a submanifold whose connected
components are knots.

Definition 2.6. A contact framing of a Legendrian knot K where the first of
the frame vectors, is tangent to the contact structure.

Definition 2.7. A surface framing of a Legendrian knot K with respect to a
surface ¥ whose boundary is K is a framing where first of the frame vectors is
tangent to the surface.

Definition 2.8. A characteristic foliation of a surface ¥ in a contact 3-manifold
(M, ) is a singular foliation formed by the intersection of the tangent space of
3 with ¢.

Definition 2.9. An overtwisted disc D is a disc in a contact 3-manifold (M, ()
with Legendrian boundary K such that the contact framing of K does not twist
with respect to surface framing and the characteristic foliation has exactly one
interior singular point.

Definition 2.10. A contact structure which has a overtwisted disc is called a
overtwisted contact structure. It is called tight if it is not overtwisted.

Example 2.2. We give an example of an overtwisted contact structure (,; in
R3. Tt can be found also in [3] Section 4.5. We define the structure by the
following equation in standard cylindrical coordinates

(2.1) cos(r)dz + rsin(r)d¢ = 0.

Take the disc D= {r|r < m,z = 0}. The characteristic foliation is singular
at 0 and along the boundary. If we perturb this disc near the boundary, the
characteristic foliation loses its singularity at the boundary and the boundary
becomes a leaf of the foliation making it an overtwisted disc of the structure (,;
and thus (,; is an overtwisted structure. We call the perturbed or unperturbed
disc D, A the standard overtwisted disc and (,; standard overtwisted structure.

2.1. Lutz twist

We consider a oriented 3-manifold with a contact structure ¢ and a transverse
oriented knot then it is known in a tubular neighborhood of the knot ( is the
kernel of the form dz + r2d# where z is along the knot direction and = and
0 are coordinates along meridian direction of the tubular neighborhood which
coincides with the normal bundle of the knot in this case. We say ( " is obtained
from ¢ with a Lutz twist if on S' x D? the new contact structure ¢ is defined
by
(2.2) ¢" = ker(hy(r)dz + ha(r)de)
and ¢’ coincides with ¢ outside the solid torus. Conditions are

(1) hi(r) = —1,ha(r) = —r’near r = 0,
(2) hi(r) =1 and ha(r) = r? near r = 1,
(3) (ha(r), ha(r)) is never parallel to (hy’, ho') for r > 0.
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2.2. Full Lutz twist

Changing condition 1 and adding some more conditions we obtained by a
full Lutz twist.

(2.3) hi(r) =1,
(2.4) ho(r) = r?
for r € [0,e] U [1 —¢,1]. By Lemma 4.5.3 in [3], we have the following lemma.

Lemma 2.3. A full Lutz twist does not change the homotopy class of ¢ as a
2-plane field.

It can be seen ho(r) is zero in two places (for details Fig. 4.11 [3]). Taking
ro the smaller radius where ho(r) = 0 consider the following embedding ¢ :
D%, — S x D% (r,¢) — (2(r),r,¢) where z(r) is a smooth function with
z(rg) = 0 and z(r) > 0 for 0 < r < 79 and 2 (1) = 0 for only 7 = 0. It can be
seen ¢(6(D2))) is Legendrian and its contact framing and surface framing do
not twist with respect to each other and with some more conditions and work
we can show ¢(D3 ) is an overtwisted disk (for more details Section 4.5 [3]).

Proposition 2.4. We thus conclude that any contact structure is homotopic
to an overtwisted contact structure obtained by a full Lutz twist.

3. Orbifolds

We give a brief introduction to orbifolds following the treatment in [1].

Definition 3.1. Let X be a topological space, and fix n > 0.

(1) An n-dimensional orbifold chart on X is given by a connected open
subset U C R™, a finite group G of smooth diffeomorphisms of U, and a
map ¢ : U — X so that ¢ is G-invariant and induces a homeomorphism
of U/G onto an open subset U C X.

(2) An embedding AU, G, ¢) —(V,H,1) between two such charts is a
smooth embedding A : U — V with )\ = ¢.

(3) An orbifold atlas on X is a family of such charts 4 = (U, G, ¢), which
cover X and satisfy the compatibility condition: given any two charts
(U,G,¢) for U= ¢(U) € X and (V,H,) for V. =1(V) C X and a
point € UNV there exists an open neighborhood W C UNV of x and a
chart (W, K, 1) for W such that there are embeddings \; : (W, K, 1) —
(U,G,$) and Ay : (W, K,p) — (V,H, ). Every embedding of charts
induces injective homomorphisms A : K — G.

(4) An atlas U is said to refine another atlas T if for every chart in I there
exists an embedding into some chart of Y. Two orbifold atlases are
said to be equivalent if they have a common refinement.

Definition 3.2. An effective orbifold X of dimension n is a paracompact Haus-
dorff space X equipped with an equivalence class [/] of n-dimensional orbifold
atlases such that each local group acts effectively in local charts.
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Throughout this paper we always assume that our orbifolds are effective.

Definition 3.3. If the finite group actions on all the charts are free, then X is
locally Euclidean, hence a manifold. Points in an effective orbifold where there
are non-trivial stabilizers form the singular locus.

Definition 3.4. Let X = (X,U) and Y = (Y, T) be orbifolds. A map f: X —
Y is said to be smooth if for any point z € X there are charts (U, G, ¢) around
x and (V,G,v), around f(x) with the property that f maps U = ¢(U) into
V = (U) and can be lifted to a smooth map f : U — V satisfying 1 f = f¢.

Definition 3.5. The isotropy subgroup of a point Z in the chart (0, G, ) is
G3 ={g € G| gz = z}. If § is a point in the G-orbit of Z, then Gy is conjugate
to Gz in G. If G is Abelian, G; = G and we denote Gz by G, where z = ¢(Z).
G is called the isotropy group of z.

3.1. Tangent bundle of an orbifold

We describe a tangent bundle for an orbifold X = (X,U). Given a chart
(U ,G, ¢) we consider a tangent bundle TU. Since G acts smoothly on U, hence
it acts smoothly on 7U. Indeed if (@, v) a typical element of 7U, then g(@, v) =
(91,dga(v)) (here d stands for the differential). Moreover the projection map
TU — U is equivariant from which we get a projection p : TU/ G — U by

using the map ¢. If © = (),
(3.1) p i (z) = {G(&,v) c TU/G}.

It is evident that this fiber is homeomorphic to T:U /Gz where as Gz is the
isotropy subgroup of the G action at . This means we have constructed
locally a bundle like object where the fiber is not necessarily a vector space,
but rather a quotient of the form R™ /Gy where Gy C GI,,(R). To construct the
tangent bundle on an orbifold X = (X,U ), we simply need to glue together the
bundles defined over the charts. Our resulting space will be an orbifold, with
an atlas TU comprising local charts (TU,G,¢) over TU = TU/G for each
(U,G,$) € U: We observe that the gluing maps A\j2 = Ao\~ ' are smooth,
so we can use the transition functions dAjz : TA (W) — TAo(W) to glue
TU/G — U to TU/H — H. In other words, we define the space 7X as an
identification space Uﬁev(TU /G)/ ~ where we give it the minimal topology
that will make the natural maps 7U /G — TX homeomorphisms onto open
subsets of T X. We summarize this in the next remark.

Remark 3.1. The tangent bundle of an n-dimensional orbifold X denoted by
TX = (TX,TU) has the structure of a 2n-dimensional orbifold. Moreover, the
natural projection p : 7X — X defines a smooth map of orbifolds, with fibers
pi(z) =T:U/Gs.



330 S. GANGULI

3.2. Example: Teardrop orbifold

A teardrop orbifold is a topological sphere with an orbifold singularity at
north pole. Consider the standard embedding of the sphere in R with (0,0, 1)
as the north pole and (0,0, —1) as the south pole. We give two orbifold charts.
Let U = {(z,y,2) € S? | z < } and V = {(z,y,2) € 52 | z > —1} are two
open sets around the south pole and north pole respectively. We define a chart
(U,G,$) where U = U, G is the trivial group and ¢ identity map. Around
north pole we take the open set V' and define an orbifold chart (f/, H, 1)) where
V =V, H =173 and ¢ is a triple cover branched at the north pole. Now if
z € UNV we take neighborhood so small that the maps ¢ and 1 cover these
neighborhood evenly. Let us call this neighborhood W, and with the chart
(W, 1,id) and the maps A; and Ag are mere inclusions. Thus we have an
orbifold structure which is different from the manifold structure of the sphere
and we call it a teardrop orbifold. From the above description it is fairly easy
to construct its tangent bundle.

Definition 3.6. A metric in an orbifold (X,U) with tangent bundle (T X, TU)
is a section of T*X ® T*X which is symmetric and positive definite. Every
effective orbifold with an orbifold structure as defined above can be given a
metric by the partition of unity.

Remark 3.2. By taking exponential map in the chart we can have charts where
the local groups are subgroup of the orthogonal group.

4. Cyclic orbifold

Definition 4.1. A cyclic orbifold is an effective orbifold where the local groups
are cyclic. A locally orientable cyclic orbifold is a cyclic orbifold with an at-
las where the local group actions are orientation preserving. From the above
remark the local groups are finite cyclic subgroups of SO(n).

Remark 4.1. All locally orientable cyclic 3-orbifolds are topologically manifolds.
To see this at a singular point (points where there is a non trivial stabilizer) the
action fixes an axis and rotates transverse 2-planes in charts. Since a 2-plane
quotients to a topological manifold under such action the topological space is
a manifold. Thus for the locally orientable cyclic 3-orbifold X = (X,U) the
topological space X is a 3-manifold.

Definition 4.2. An oriented compact locally orientable cyclic 3-orbifold X is
a locally orientable cyclic orbifold such that the underlying topological space
X is oriented and compact.

Lemma 4.2. The singular locus S of a locally orientable compact cyclic 3-
orbifold X with the topological space X is a link.

Proof. By local orientability condition around a singular point the action is
of a cyclic subgroup of SO(3). The fixed point set of the local action is an
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axis which is an one manifold. Since the singular locus is a closed set and the
topological space X is compact the connected components are knots. ([

Remark 4.3. The order of the local group along a connected component of the
singular link does not change as we can see from above it is locally constant.

Remark 4.4. From now on by cyclic 3-orbifolds we mean locally orientable
cyclic 3-orbifolds.

4.1. Example

Tear drop orbifold described in 3.2 is a cyclic orbifold. In three dimensions
take a solid torus lying in a 3-manifold and replace it by a Z,, quotient where
the group acts as rotation in meridian disc directions. The resulting space has
a cyclic orbifold structure.

5. Contact orbifold

Definition 5.1. A contact orbifold is an orbifold where there is a local group
invariant contact structure in each orbifold chart and which is invariant under
embedding of charts.

6. Compact oriented cyclic orbifolds have contact structure
We prove in this section that:
Theorem 6.1. Any compact oriented cyclic 3-orbifold has a contact structure.

To prove this we are required to prove a classification theorem for oriented
cyclic 3-orbifold.

Theorem 6.2. Fvery oriented cyclic 3-orbifold can be reduced to a quotient of
local actions which are global cyclic group actions along the neighborhoods of the
singular link components and their actions are rotations along discs transverse
to the link with respect to a suitable metric and coordinates compatible with
respect to orbifold coordinates.

Proof. Take a compact oriented cyclic orbifold X with a topological space X
and singular link S. Take a point « on the singular link. Take an orbifold chart
U = (U,,G,¢) where G is a finite cyclic subgroup of SO(3) and ¢((U,) is an
open set in X around the point x. The G action fixes ¢~1(S) and preserves
a 2-plane in tangent space of ¢~1(x) (which is a vector space and covers the
orbifold tangent space of x which is not a vector space) transverse to the vector
along the lift of the singular link. If z lies in the overlap of image of two
charts U = (U,, G, ¢) and V = (V,, H,1)) the tangent space of ¢~ () and
¥~ 1(x) are connected by d()\g)\fl) where A\; : W, — U, and \y : W, — V,
are embeddings of another chart W, around  to the above two charts and
d means the differential (for definition of embedding of charts please refer to
3.1. It should also be noted that these embeddings induce isomorphisms of
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local groups since the order of each group involved is same as the order of
singularity along the link component). It is obvious from the definition of
embeddings that the transition function d(AxA; ') maps the direction along
the singular link S in one chart to the direction of the singular link S in the
other chart and the GG invariant plane to the H invariant plane. If we take any
other embedding A3 and \4 the two differentials d(ApA; ") and d(AgA3 ™) will
differ by a composition of 2kw/n rotation (they are smooth hence differ by a
group element and n is the order of this connected component of the link). So
changing A4 suitably (i.e., multiplying by a 2k7/n rotation or an element of
the local group) we get embeddings which give rise to transition functions of
these link-transverse planes. Thus we can glue trivialization of 2-planes into a
bundle B around the connected component of the singular link.

Remark 6.3. Since there exist charts around each point in the singular link
component which is a replica of part of the tangent space of a point lying in
the link component (since we are taking exponential maps to construct charts),
embeddings are linear maps in some coordinates thus their differentials coincide
with actual maps along the above link transverse planes. Thus the bundle tran-
sition functions are actually transition functions of the orbifold in the transverse
plane direction near the link points.

Since around each point on the singular link of the total space of the above
bundle B gets coordinates from a neighborhood chart we get coordinates of
the total space around the point that are compatible with local charts of the
orbifold. Now covering the connected component of the link by such neigh-
borhoods in the total space of B by tube lemma like arguments we will get
a tubular neighborhood of the connected component of the link such that the
bundle coordinates are compatible with the coordinates of the orbifold X. Now
since the coordinates of the orbifold structure induce a smooth manifold struc-
ture on the complement of the link S' by creating similar tubular neighborhoods
around other components of the link we get a smooth manifold structure by
gluing the tubular neighborhoods with the complement of the link by pasting
points away from the link. (the gluing is possible because the chart branched
cover and the covered space near the link component are homeomorphic around
the points of the link, and diffeomorphic away from the link component (both
homeomorphic to a D? (disc) bundle over S! because action of cyclic groups
by rotation on meridian discs quotients to discs).)

Since the topological space resulting from gluing is homeomorphic to the X
and since X is an oriented manifold the bundle B is an oriented bundle. Thus
B can be trivialized. Take an element g of a local group and such that it acts
as a 27 /n rotation in the respective chart and since

(6.1) d(A2A1™1)dg = d(n(g))d(A2A1 ")

(where 7 is a group isomorphism) and since the bundle B is orientable d(n(g))
acts as a 27/n rotation on the link-transverse planes on the tangent bundle
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of the other chart. To see the above let v belong to a fiber in a trivialization
of B corresponding to the first chart. Then d(g)v and v form a 27/n sector
in the fiber. Then d(AgA; ™ ")dgv and d(Ax\;~')v will form a 2k7/n sector by
the above equation 6.1. Since the transition map is one-one and 7(g) is group
homomorphism we have k = 1. So d(n(g)) will be a 2w /n or a —27/n rotation,
but since the bundle is orientable 7(g) is a 27 /n rotation in the other chart. So
the action of the local groups can be made global on the tubular neighborhood
around the connected component of the link. Giving a metric by gluing the
standard metric in the charts in the tubular neighborhood, which is invariant
under the action of this group we get dr and 90 coordinates where action of the
group elements are just translations by constants in the theta direction. ([l

Now we give the proof of Theorem 6.1.

Proof of Theorem 6.1. We define a contact structure around the tubular neigh-
borhood (derived in Theorem 6.2) given by dz + r2d(6) where z direction is the
link direction.

Now do the same thing for all components of the link. Taking a disjoint ball
pull back on it the standard overtwisted structure with the standard overtwisted
disc lying in it. We can extend these 2-plane fields (the local contact structure
around link components and the disjoint ball) to global 2-plane fields and we can
get a contact structure homotopic to the global plane field which extends the
contact structure around the link on the whole manifold by using Eliashberg’s
extension theorem (see [2, Theorem 3.1.1]) by taking A as the link, L as the
empty set and K as the one point set in the statement of the theorem. This
structure is a contact structure in the orbifold coordinates (see Theorem 6.2)
around the link (since the tubular neighborhood coordinates are compatible
with orbifold coordinates) and is invariant under the action of the local groups
which are global along these neighborhoods of the link component (this follows
from the previous theorem). Since away from the link the manifold and orbifold
coordinates are compatible we have a contact structure on the whole orbifold
X.

Alternative argument: From the above discussions it is clear the orbifold
X is topologically a manifold and has an unique smooth structure. For this
smooth structure on X we get the existence of a contact structure by Martinet’s
theorem (see Theorem 4.1.1 in [3]). After an isotopy we can assume that the
set S forms a transverse link, to which we can apply neighborhood theorem
(see Example 2.5.16 in [3]) giving a desired contact form dz + 72dg. As this is
rotationally invariant under our group action (due to the isotopy), we can now
push this to the orbifold setting using the uniformization charts of the above
proved theorem. O

Remark 6.4. The need for a neighborhood around the link component with
compatible orbifold co-ordinates which extends to smooth manifold coordinate
system is necessary because otherwise the structure dz + r2d(f) would have
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lifted to a singular form in orbifold coordinates (dz +72/™d(0/n)), if we just go
by definition without the above adjustment. This happens because the orbifold
co-ordinates are branched cover over the transverse discs of actual manifold co-
ordinates (the branched cover along the transverse discs can be best described
by the map w — w™, hence the singular form).

Corollary 6.5. The orbifold contact structure induces a contact structure in
the manifold.

Proof. Since the orbifold co-ordinates around the link components can be ex-
tended to a smooth manifold coordinate system the orbifold contact structure
is a manifold contact structure transverse and rotationally invariant near the
link components. O

Remark 6.6. The oriented condition is necessary for the space to have a con-
tact structure since from the above corollary it is clear that an orbifold contact
structure on these orbifolds induces a contact structure on the manifold struc-
ture thus making it an oriented manifold.

Remark 6.7. There are cyclic orbifolds whose topological space is non-oriented.
For example take a non-oriented manifold. Take a small Euclidean open neigh-
borhood and take a smaller solid torus. Remove the interior and replace it with
a solid torus quotient of a Z,, action by rotation on meridian discs. This is a
cyclic orbifold with a non-oriented manifold as a topological space.

7. Overtwisted and tight structures

Definition 7.1. An overtwisted contact structure in an oriented compact con-
tact cyclic 3-orbifold is a contact structure which lifts to an overtwisted struc-
ture in the corresponding manifold structure. It is a tight structure if it is not
overtwisted.

Definition 7.2. A Lutz twist in an oriented compact contact cyclic 3-orbifold
for knots disjoint from the singular link S and knots lying in the singular link is
a Lutz twist on the contact structure induced in the manifold. Since the twist
parameters are rotationally invariant, on the orbifold contact structure given
by our method the result of a Lutz twist is again another contact structure in
orbifold level. In the same way we can define full Lutz twist.

Theorem 7.1. Any contact structure induced by our method is homotopic to an
overtwisted contact structure with the overtwisted disc intersecting the singular
link S.

Proof. Inspecting Lemma 4.5.3 in [3] the homotopy between a contact structure
and the structure resulting from a full Lutz twist is rotation invariant. So
around a knot in the singular link our contact structure can be changed to
an overtwisted contact structure by a homotopy in the orbifold level. Since
an overtwisted disc intersects the knot around which the twist is taken some
overtwisted disc will intersect the knot in the singular link. (I
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