• Title/Summary/Keyword: mathematical proof

Search Result 546, Processing Time 0.019 seconds

WEAK FACTORIZATIONS OF H1 (ℝn) IN TERMS OF MULTILINEAR FRACTIONAL INTEGRAL OPERATOR ON VARIABLE LEBESGUE SPACES

  • Zongguang Liu;Huan Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1439-1451
    • /
    • 2023
  • This paper provides a constructive proof of the weak factorizations of the classical Hardy space H1(ℝn) in terms of multilinear fractional integral operator on the variable Lebesgue spaces, which the result is new even in the linear case. As a direct application, we obtain a new proof of the characterization of BMO(ℝn) via the boundedness of commutators of the multilinear fractional integral operator on the variable Lebesgue spaces.

AN INTRINSIC PROOF OF NUMATA'S THEOREM ON LANDSBERG SPACES

  • Salah Gomaa Elgendi;Amr Soleiman
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.149-160
    • /
    • 2024
  • In this paper, we study the unicorn's Landsberg problem from an intrinsic point of view. Precisely, we investigate a coordinate-free proof of Numata's theorem on Landsberg spaces of scalar curvature. In other words, following the pullback approach to Finsler geometry, we prove that all Landsberg spaces of dimension n ≥ 3 of non-zero scalar curvature are Riemannian spaces of constant curvature.

AN ALTERNATIVE PROOF FOR THE MINIMALITY OF STRONGLY QUASI-POSITIVE FIBERED KNOTS IN THE RIBBON CONCORDANCE POSET

  • Keiji Tagami
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.779-784
    • /
    • 2024
  • Baker proved that any strongly quasi-positive fibered knot is minimal with respect to the ribbon concordance among fibered knots in the three-sphere. By applying Rapaport's conjecture, which has been solved by Kochloukova, we can check that any strongly quasi-positive fibered knot is minimal with respect to the ribbon concordance among all knots in the three-sphere. In this short note, we give an alternative proof for the fact by utilizing the knot Floer homology.

Analysis of geometric proof texts in school mathematics (학교수학에서 기하 증명 텍스트의 분석 - 기능문법과 수사학을 중심으로 -)

  • 김선희;이종희
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.1
    • /
    • pp.13-28
    • /
    • 2003
  • Practice of proof is considered in, the view of language and meta-mathematics, recognizing the role of proof that is the means of communication and development of mathematical understanding. Linguistic components in proof texts are symbol, verbal language and visual text, and contain the implicit knowledge in the meta-mathematics view. This study investigates the functions of linguistic elements according to Halliday's functional grammar and the rhetoric skills in proof texts in math textbook, teacher's note, and student's written text. We need to inquire into the aspects of language for mathematics learning process and the understanding and use of students' language.

  • PDF

Analysis of various proofs of Pythagorean theorem (피타고라스 정리의 다양한 증명 방법과 수학교육학적 아이디어 분석)

  • Kim, Young-Rock;Noh, Hee-Sung;Son, Eun-Hae
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.887-921
    • /
    • 2009
  • Pythagorean theorem is one of mathematical contents which is widely used during human culture have developed. There are many historial records related to Pythagorean theorem made by Babylonian, Egyptian, and Mesopotamian. The theorem has the important meaning for mathematics education in secondary school education. Along with the importance of the proof itself, diverse proof methods and ideas included in their methods are also important since the methods improve students' ability to think mathematics. Hence, in this paper, we classify and analyze 390 proof methods published in the book "All that Pythagorean theorem" and other materials. Based on the results we derive educational meaning in mathematics with respect to main idea of the proof, the preliminaries of the study, and study skills used for proof.

  • PDF

A study on understanding the deduction system in the proof (증명에서 연역 체계 이해에 관한 연구)

  • Kang, Jeong Gi;Roh, Eun Hwan
    • The Mathematical Education
    • /
    • v.52 no.4
    • /
    • pp.549-565
    • /
    • 2013
  • To help students understand the deduction system in the proof, we analyzed the textbook on mathematics at first. As results, we could find that the textbook' system of deduction is similar with the Euclid' system of deduction. The starting point of deduction is different with each other. But the flow of deduction match with each other. Next, we searched for the example of circular argument and analyzed. As results, we classified the circular argument into two groups. The first is an internal circular argument which is a circular argument occurred in a theorem. The second is an external circular argument which is a circular argument occurred between many theorems. We could know that the flow of deduction system is consistent in internal-external dimension. Lastly, we proposed the desirable teaching direction to help students understand the deduction system in the proof.

A TOPOLOGICAL PROOF OF THE PERRON-FROBENIUS THEOREM

  • Ghoe, Geon H.
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.565-570
    • /
    • 1994
  • In this article we prove a version of the Perron-Frobenius Theorem in linear algebra using the Brouwer's Fixed Point Theorem in topology. We will mostly concentrate on he qualitative aspect of the Perron-Frobenius Theorem rather than quantitative formulas, which would be enough for theoretical investigations in ergodic theory. By the nature of the method of the proof, we do not expect to obtain a numerical estimate. But we may regard it worthwhile to see why a certain type of result should be true from a topological and geometrical viewpoint. However, a geometric argument alone would give us a sharp numerical bounds on the size of the eigenvalue as shown in Section 2. Eigenvectors of a matrix A will be fixed points of a certain mapping defined in terms of A. We shall modify an existing proof of Frobenius Theorem and that will do the trick for Perron-Frobenius Theorem.

  • PDF

A Study on New Proofs and Generalization of Haga Theorem in Paper folding (종이접기에서 Haga 정리의 증명과 일반화에 대한 연구)

  • Lee, Seong-Hyun;Jung, Sang-Hyuk;Han, In-Ki
    • Communications of Mathematical Education
    • /
    • v.22 no.1
    • /
    • pp.65-77
    • /
    • 2008
  • In this paper we study new proofs and generalization of Haga theorem in paper folding. We analyze developed new proofs of Haga theorem, compare new proofs with existing proof, and describe some difference of these proofs. We generalize Haga second theorem, and suggest simple proof of generalized Haga second theorem.

  • PDF

Exploring students' thinking in proof production in geometry (기하 증명 구성에 나타나는 학생들의 사고과정 탐색)

  • An, SunYoung;Kim, Gooyeon
    • The Mathematical Education
    • /
    • v.53 no.3
    • /
    • pp.383-397
    • /
    • 2014
  • This study aims to explore secondary students' thinking while doing proof in geometry. Two secondary students were interviewed and the interview data were analyzed. The results of the analysis suggest that the two students similarly showed as follows: a) tendencies to use the rules of congruent and similar triangles to solve a given problem, b) being confused about the rules of similar and congruent triangles, and c) being confused about the definitions, partition and hierarchical classification of quadrilaterals. Also, the results revealed that a relatively low achieving student has tendency to rely on intuitive information such as visual representations.