DOI QR코드

DOI QR Code

AN ALTERNATIVE PROOF FOR THE MINIMALITY OF STRONGLY QUASI-POSITIVE FIBERED KNOTS IN THE RIBBON CONCORDANCE POSET

  • Keiji Tagami (Department of The Faculty of Economics Sciences Hiroshima Shudo University)
  • Received : 2023.06.23
  • Accepted : 2023.08.07
  • Published : 2024.05.31

Abstract

Baker proved that any strongly quasi-positive fibered knot is minimal with respect to the ribbon concordance among fibered knots in the three-sphere. By applying Rapaport's conjecture, which has been solved by Kochloukova, we can check that any strongly quasi-positive fibered knot is minimal with respect to the ribbon concordance among all knots in the three-sphere. In this short note, we give an alternative proof for the fact by utilizing the knot Floer homology.

Keywords

Acknowledgement

The author was supported by JSPS KAKENHI Grant number JP22K13923.

References

  1. T. Abe and K. Tagami, A generalization of the slice-ribbon conjecture for two-bridge knots and tn-move, to appear in Tohoku Mathematical Journal. 
  2. I. Agol, Ribbon concordance of knots is a partial ordering, Comm. Amer. Math. Soc. 2 (2022), 374-379. https://doi.org/10.1090/cams/15 
  3. K. L. Baker, A note on the concordance of fibered knots, J. Topol. 9 (2016), no. 1, 1-4. https://doi.org/10.1112/jtopol/jtv024 
  4. J. A. Baldwin, N. Dowlin, A. S. Levine, T. Lidman, and R. Sazdanovic, Khovanov homology detects the figure-eight knot, Bull. Lond. Math. Soc. 53 (2021), no. 3, 871-876. https://doi.org/10.1112/blms.12467 
  5. C. M. Gordon, Ribbon concordance of knots in the 3-sphere, Math. Ann. 257 (1981), no. 2, 157-170. https://doi.org/10.1007/BF01458281 
  6. M. Hedden and L. Watson, On the geography and botany of knot Floer homology, Selecta Math. (N.S.) 24 (2018), no. 2, 997-1037. https://doi.org/10.1007/s00029-017-0351-5 
  7. A. Juhasz and M. Marengon, Concordance maps in knot Floer homology, Geom. Topol. 20 (2016), no. 6, 3623-3673. https://doi.org/10.2140/gt.2016.20.3623 
  8. D. H. Kochloukova, Some Novikov rings that are von Neumann finite and knot-like groups, Comment. Math. Helv. 81 (2006), no. 4, 931-943. https://doi.org/10.4171/CMH/81 
  9. C. Livingston, The concordance genus of a knot. II, Algebr. Geom. Topol. 9 (2009), no. 1, 167-185. https://doi.org/10.2140/agt.2009.9.167 
  10. C. Manolescu, An introduction to knot Floer homology, in Physics and mathematics of link homology, 99-135, Contemp. Math., 680, Centre Rech. Math. Proc, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/conm/680 
  11. E. J. Mayland Jr., Two-bridge knots have residually finite groups, in Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973), 488-493, Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974. 
  12. E. J. Mayland Jr. and K. Murasugi, On a structural property of the groups of alternating links, Canadian J. Math. 28 (1976), no. 3, 568-588. https://doi.org/10.4153/CJM1976-056-8 
  13. K. Miyazaki, A note on genera of band sums that are fibered, J. Knot Theory Ramifications 27 (2018), no. 12, 1871002, 3 pp. https://doi.org/10.1142/S0218216518710025 
  14. Y. Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, 577- 608. https://doi.org/10.1007/s00222-007-0075-9 
  15. P. Ozsvath and Z. Szabo, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311-334. https://doi.org/10.2140/gt.2004.8.311 
  16. A. N. Shumakovitch, Rasmussen invariant, slice-Bennequin inequality, and sliceness of knots, J. Knot Theory Ramifications 16 (2007), no. 10, 1403-1412. https://doi.org/10.1142/S0218216507005889 
  17. D. S. Silver, On knot-like groups and ribbon concordance, J. Pure Appl. Algebra 82 (1992), no. 1, 99-105. https://doi.org/10.1016/0022-4049(92)90013-6 
  18. K. Tagami, Remarks on the minimalities of two-bridge knots in the ribbon concordance poset, submitted, 2023. 
  19. I. Zemke, Knot Floer homology obstructs ribbon concordance, Ann. of Math. (2) 190 (2019), no. 3, 931-947. https://doi.org/10.4007/annals.2019.190.3.5