Acknowledgement
The author was supported by JSPS KAKENHI Grant number JP22K13923.
References
- T. Abe and K. Tagami, A generalization of the slice-ribbon conjecture for two-bridge knots and tn-move, to appear in Tohoku Mathematical Journal.
- I. Agol, Ribbon concordance of knots is a partial ordering, Comm. Amer. Math. Soc. 2 (2022), 374-379. https://doi.org/10.1090/cams/15
- K. L. Baker, A note on the concordance of fibered knots, J. Topol. 9 (2016), no. 1, 1-4. https://doi.org/10.1112/jtopol/jtv024
- J. A. Baldwin, N. Dowlin, A. S. Levine, T. Lidman, and R. Sazdanovic, Khovanov homology detects the figure-eight knot, Bull. Lond. Math. Soc. 53 (2021), no. 3, 871-876. https://doi.org/10.1112/blms.12467
- C. M. Gordon, Ribbon concordance of knots in the 3-sphere, Math. Ann. 257 (1981), no. 2, 157-170. https://doi.org/10.1007/BF01458281
- M. Hedden and L. Watson, On the geography and botany of knot Floer homology, Selecta Math. (N.S.) 24 (2018), no. 2, 997-1037. https://doi.org/10.1007/s00029-017-0351-5
- A. Juhasz and M. Marengon, Concordance maps in knot Floer homology, Geom. Topol. 20 (2016), no. 6, 3623-3673. https://doi.org/10.2140/gt.2016.20.3623
- D. H. Kochloukova, Some Novikov rings that are von Neumann finite and knot-like groups, Comment. Math. Helv. 81 (2006), no. 4, 931-943. https://doi.org/10.4171/CMH/81
- C. Livingston, The concordance genus of a knot. II, Algebr. Geom. Topol. 9 (2009), no. 1, 167-185. https://doi.org/10.2140/agt.2009.9.167
- C. Manolescu, An introduction to knot Floer homology, in Physics and mathematics of link homology, 99-135, Contemp. Math., 680, Centre Rech. Math. Proc, Amer. Math. Soc., Providence, RI, 2016. https://doi.org/10.1090/conm/680
- E. J. Mayland Jr., Two-bridge knots have residually finite groups, in Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973), 488-493, Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974.
- E. J. Mayland Jr. and K. Murasugi, On a structural property of the groups of alternating links, Canadian J. Math. 28 (1976), no. 3, 568-588. https://doi.org/10.4153/CJM1976-056-8
- K. Miyazaki, A note on genera of band sums that are fibered, J. Knot Theory Ramifications 27 (2018), no. 12, 1871002, 3 pp. https://doi.org/10.1142/S0218216518710025
- Y. Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, 577- 608. https://doi.org/10.1007/s00222-007-0075-9
- P. Ozsvath and Z. Szabo, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311-334. https://doi.org/10.2140/gt.2004.8.311
- A. N. Shumakovitch, Rasmussen invariant, slice-Bennequin inequality, and sliceness of knots, J. Knot Theory Ramifications 16 (2007), no. 10, 1403-1412. https://doi.org/10.1142/S0218216507005889
- D. S. Silver, On knot-like groups and ribbon concordance, J. Pure Appl. Algebra 82 (1992), no. 1, 99-105. https://doi.org/10.1016/0022-4049(92)90013-6
- K. Tagami, Remarks on the minimalities of two-bridge knots in the ribbon concordance poset, submitted, 2023.
- I. Zemke, Knot Floer homology obstructs ribbon concordance, Ann. of Math. (2) 190 (2019), no. 3, 931-947. https://doi.org/10.4007/annals.2019.190.3.5