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AN INTRINSIC PROOF OF NUMATA’S THEOREM

ON LANDSBERG SPACES

Salah Gomaa Elgendi and Amr Soleiman

Abstract. In this paper, we study the unicorn’s Landsberg problem

from an intrinsic point of view. Precisely, we investigate a coordinate-
free proof of Numata’s theorem on Landsberg spaces of scalar curvature.

In other words, following the pullback approach to Finsler geometry, we
prove that all Landsberg spaces of dimension n ≥ 3 of non-zero scalar

curvature are Riemannian spaces of constant curvature.

1. Introduction

Let (M,L) be an n-dimensional smooth Finsler manifold. The manifold
(M,L) is called a Berwald manifold if for any piecewise smooth curve c(t)
joining two points p, q ∈ M , the Berwald parallel translation Pc is a linear
isometry between the tangent spaces TpM and TqM . This is equivalent to
that the geodesic spray of L is quadratic. Also, (M,L) is called a Landsberg
manifold if the parallel translation Pc along c preserves the induced Riemannian
metrics on the slit tangent spaces TpM\{0} and TqM\{0} is an isometry. This
is equivalent to the property that the horizontal covariant derivative of the
metric tensor of F with respect to Berwald connection vanishes.

It is clear that every Berwald space is Landsberg. Whether there are Lands-
berg spaces which are not Berwaldian is a long-standing question in Finsler
geometry, which is still open. Despite the efforts done by many geometers, it
is not known a regular non-Berwaldian Landsberg space.

In [1], G. S. Asanov obtained examples, arising from Finslerian General
Relativity, of non-Berwaldian Landsberg spaces, of dimension at least 3. In
Asanov’s examples the Finsler function is not defined for all values of the fiber
coordinates yi so it is a non-regular Finsler function. In [7], Z. Shen studied
a class of (α, β) metrics of Landsberg type generalizing Asanov’s example; he
found non-regular non-Berwaldian Landsberg spaces. The elusiveness of regular
non-Berwaldian Landsberg spaces leads Bao [2] to describe them as the unicorns
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of Finsler geometry. In some special cases, a Landsberg manifold reduces to
Berwald manifold. For example, S. Numata in [6] has proved that all Landsberg
metrics of n ≥ 3 and of non-vanishing scalar curvature are Remannian metric
of non-zero constant curvature.

All work that are mentioned above are local study. On the other hand, there
are very few papers studying the unicorn problem intrinsically. In the present
paper, we treat the unicorn’s Landsberg problem intrinsically. Following the
pullback approach to Finsler geometry, we study intrinsically Landsberg Finsler
spaces of non-vanishing scalar curvature and providing an intrinsic proof of
Numata’s theorem. We prove a useful property on C-reducible Finsler spaces
(cf. Proposition 3.5). Also, we show that a Landsberg manifold of non zero
scaler curvature is C-reducible (cf. Proposition 4.2). Then, we prove that a
Berwald manifold of non zero scalar curvature and n ≥ 3 is a Riemannian
manifold of constant curvature (cf. Theorem 4.3). Finally, we conclude that a
Landsberg manifold of non zero scalar curvature and of dimension n ≥ 3 is a
Riemannian manifold of constant curvature (cf. Theorem 4.4).

2. Notations and preliminaries

Here, we present some of the fundamental basics of the pullback approach
to Finsler geometry that are required for this study. For more detail about this
approach, we refer, for example, to [5, 8, 11,12].

Let M be an n-dimensional smooth manifold, consider the tangent bundle
π : TM −→ M and its differential dπ : TTM −→ TM . The vertical bundle
V (TM) of TM is just ker(dπ). Let us denote the pullback bundle of the tangent
bundle by π−1(TM). Also, F(TM) denotes the algebra of C∞ functions on
TM and X(π(M)) the F(TM)-module of differentiable sections of the pullback
bundle π−1(TM). The elements of X(π(M)) will be called π-vector fields and
denoted by barred letters X.

Recall the short exact sequence of vector bundle morphisms [3]

0 −→ π−1(TM)
γ−→ T (TM)

ρ−→ π−1(TM) −→ 0,

where TM is the slit tangent bundle, γ is the natural injection and ρ :=
(πTM , π).

The tangent structure J of TM or the vertical endomorphism is the endo-
morphism J : TTM −→ TTM defined by J = γ ◦ ρ. The Liouville vector field
C is given by C := γ η, where η(u) = (u, u) for all u ∈ TM .

For a linear connection D on π−1(TM), the associated connection map
K is defined by K : TTM −→ π−1(TM), X 7−→ DXη, and the horizontal
space Hu(TM) to M at u is Hu(TM) := {X ∈ Tu(TM) : K(X) = 0}. The
connection D is said to be regular if

Tu(TM) = Vu(TM)⊕Hu(TM) ∀u ∈ TM.
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For a regular connection D on M , the vector bundle maps γ, ρ|H(T M) and

K|V (T M) are isomorphisms. In this case, the map β := (ρ|H(T M))
−1 is called

the horizontal map of D.

Definition 2.1. Let D be a regular connection on π−1(TM) with the hori-
zontal map β and the corresponding classical torsion (resp. curvature) tensor
field T (resp. K). Then, we have

(1) For a π-tensor field A of type (0, p), the h- and v-covariant derivatives
h

D and
v

D:

(
h

D A)(X,X1, . . . , Xp) := (DβXA)(X1, . . . , Xp),

(
v

D A)(X,X1, . . . , Xp) := (DγXA)(X1, . . . , Xp).

(2) The (h)h-, (h)hv- and (h)v-torsion tensors of D:

Q(X,Y ) := T(βX, βY ), T (X,Y ) := T(γX, βY ), V (X,Y ) := T(γX, γY ).

(3) The horizontal, mixed and vertical curvature tensors of D:

R(X,Y )Z := K(βX, βY )Z, P (X,Y )Z := K(βX, γY )Z,

S(X,Y )Z := K(γX, γY )Z.

(4) The (v)h-, (v)hv- and (v)v-torsion tensors of D:

R̂(X,Y ) := R(X,Y )η, P̂ (X,Y ) := P (X,Y )η, Ŝ(X,Y ) := S(X,Y )η.

Throughout, we assume that (M,L) is a Finsler manifold of dimension n.
We have the following geometric objects:

g : the Finser metric defined by L,

ℓ : the normalized supporting element defined by ℓ := L−1iη g,

ℏ : the angular metric tensor defined by ℏ := g − ℓ⊗ ℓ,

ϕ : the vector π-form associated with ℏ defined by iϕ(X) g := iX ℏ,
D◦ : the Berwald connection associated with (M,L),

h

D◦ (
v

D◦) : the horizontal (vertical) covariant derivative associated with D◦,

R◦, P ◦, R̂◦ : the h-curvature, hv-curvature, (v)h-torsion tensors of

Berwald connection,

P◦ : the Berwald hv-curvature of type (0, 4) defined by

P◦(X,Y , Z,W ) := g(P ◦(X,Y )Z,W ),

H := iη R̂◦ : the deviation tensor of Berwald connection,

∇ : the Cartan connection associated with (M,L),

h

∇ (
v

∇) : the horizontal (vertical) covariant derivative associated with ∇,
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R, P, R̂ : the h-curvature, hv-curvature, (v)h-torsion tensors of Cartan

connection,

T : the (h)hv-torsion of Cartan connection,

C : the contracted torsion form defined by

C(X) := Tr{Y 7−→ T (X,Y )},
T : the Cartan tensor defined by T(X,Y , Z) := g(T (X,Y ), Z),

P̂ : (v)hv-torsion tensor of Cartan connection.

The following result provides the relation between the Berwald connection D◦

and the Cartan connection ∇.

Proposition 2.2 ([9]). Let (M,L) be a Finsler manifold and g be the Finsler
metric induced by L. The Cartan connection ∇ and the Berwald connection
D◦ are related by:

(a) D◦
γX
Y = ∇γXY − T (X,Y ) = ρ[γX, βY ],

(b) D◦
βX
Y = ∇βXY + P̂ (X,Y ) = K[βX, γY ],

where K and β are the connection map and the horizontal map associated with
Cartan connection ∇, respectively.

Definition 2.3 ([10]). A Finsler manifold (M,L) with n ≥ 3 is said to be of
scalar curvature r if the deviation tensor H satisfies the property

H(X) = rL2ϕ(X),

where r is a scalar function on TM , positively homogeneous of degree zero in
y (h+(0))1. In particular, if the scalar curvature r is constant, then (M,L) is
called a Finsler manifold of constant curvature.

Definition 2.4 ([10]). For a Finsler manifold (M,L) is said to be:

(a) Berwald if the Berwald hv-curvature P ◦ = 0 ⇔ ∇βX T = 0.

(b) Landsberg if the Cartan hv-curvature P = 0 ⇔ ∇βη T = 0 = P̂ .

3. C-reducible Finsler manifolds

Let’s start with the definition of C-reducible Finsler manifolds.

Definition 3.1 ([10]). A Finsler manifold (M,L) is called C-reducible if the
Cartan tensor T has the form

T(X,Y , Z) =
1

n+ 1
{ℏ(X,Y )C(Z) + ℏ(Y , Z)C(X) + ℏ(Z,X)C(Y )},

where C is the contracted torsion form.

The following three lemmas are useful for subsequent use.

1ω is h+(k) in y if and only if D◦
γη ω = k ω.
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Lemma 3.2. For a Finsler manifold (M,L), we have:

(a) T,
v

∇ T and ℏ are totally symmetric.

(b)
v

∇ L =
v

D◦ L = ℓ,
v

∇ ℓ =
v

D◦ ℓ = L−1ℏ.
(c)

v

D◦ ϕ = −L−2ℏ⊗ η − L−1ϕ⊗ ℓ.
(d) (D◦

γX ℏ)(Y ,Z) = 2T(X,Y , Z)− L−1ℏ(X,Y )ℓ(Z)− L−1ℏ(X,Z)ℓ(Y ).

(e) (∇γX ℏ)(Y , Z) = −L−1ℏ(X,Y )ℓ(Z)− L−1ℏ(X,Z)ℓ(Y ).

Proof. The proof is clear and we omit it. □

For a Finsler manifold (M,L) of a non zero scalar curvature r, we define:

A(X,Y ) := Lℓ(X)D◦
γY

r +
2

3
Lℓ(Y )D◦

γX
r + r ℓ(X)ℓ(Y )

+
1

3
L2D◦

γY
D◦

γX
r,(3.1)

B(X) := rLℓ(X) +
1

3
L2D◦

γX
r.(3.2)

Lemma 3.3. The tensor fields A and B, defined above, have the following
properties

(a) A(η,X) = rLℓ(X) + 2
3L

2D◦
γX

r.

(b) A(X, η) = B(X).
(c) A(η, η) = B(η) = r L2.
(e) (D◦

γY
B)(X) = A(X,Y ) + r ℏ(X,Y ).

Proof. The proof follows from Lemma 3.2 taking into account the facts that
ℓ(η) = L and r is positively homogenous of degree zero in y. □

Lemma 3.4. The h-curvature tensor R◦ of Berwald connection, for a Finsler
manifold (M,L) of non zero scalar curvature r, has the form2

R◦(X,Y )Z = AX,Y {[r ℏ(X,Z) +A(X,Z)]ϕ(Y )

−B(X)[L−2ℏ(Y ,Z) η + L−1ℓ(Y )ϕ(Z)]}.

Proof. Let (M,L) be a Finsler manifold of non zero scaler curvature r. Then,
by Definition 2.3, [12, Theorem 4.6] and Lemma 3.2, we obtain

R̂◦(X,Y ) =
1

3
AX,Y

{
(

v

D◦ H)(X,Y )

}
= AX,Y

{
B(X)ϕ(Y )

}
,(3.3)

where B is the tensor field given by (3.2).
On the other hand, again by [12, Theorem 4.6], we have

R◦(X,Y )Z = (
v

D◦ R̂◦)(Z,X, Y ).

2AX,Y {A(X,Y )} = A(X,Y )−A(Y ,X).
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From which, together with (3.1) and Lemmas 3.2 and 3.3, after some compu-
tation the result follows. □

Proposition 3.5. For a C-reducible Finsler space there exists a scalar α(x, y)
such that

(3.4) L (∇γXC)(W ) + ℓ(X)C(W ) + ℓ(W )C(X) = α(x, y) ℏ(X,W ).

Proof. From Lemma 3.2(a), we have

(3.5) (∇γX T)(Y ,Z,W ) = (∇γY T)(X,Z,W ).

Contracting Z with W , the above relation reduces to

(3.6) (∇γX C)(Y ) = (∇γY C)(X).

Again from (3.5), taking into account the C-reducibility property, we obtain

(∇γX ℏ)(Y ,Z)C(W ) + ℏ(Y ,Z) (∇γX C)(W )

+ (∇γX ℏ)(Z,W )C(Y ) + ℏ(Z,W ) (∇γX C)(Y )

+ (∇γX ℏ)(W,Y )C(Z) + ℏ(W,Y ) (∇γX C)(Z)

− (∇γY ℏ)(X,Z)C(W )− ℏ(X,Z) (∇γY C)(W )

− (∇γY ℏ)(Z,W )C(X)− ℏ(Z,W ) (∇γY C)(X)

− (∇γY ℏ)(W,X)C(Z)− ℏ(W,X) (∇γY C)(Z) = 0.

Applying Lemma 3.2(e) and (3.6), we obtain that

ℏ(Y ,Z)A(X,W ) + ℏ(Y ,W )A(X,Z)− ℏ(X,Z)A(Y ,W )

− ℏ(X,W )A(Y , Z) = 0,(3.7)

where A is a π-tensor field of type (0, 2) defined by

(3.8) A(X,W ) := (∇γX C)(W ) + L−1{ℓ(X)C(W ) + ℓ(W )C(X)}.

Contracting Y with W into (3.7), we get

A(X,Z) + (n− 1)A(X,Z)− f(x, y) ℏ(X,Z)− A(X,Z) = 0,

where f(x, y) is the contracting Y with W for the π-tensor field A(Y ,W ).
From which together with the expression of A (3.8), the result follows where

α(x, y) := f(x,y)L
(n−1) . □

4. Landsberg C-reducible manifolds

It is obvious that every Berwald manifold is Landsberg, but the converse is
not true. However, the following two results generalize the results of Matsumoto
[4]:

Theorem 4.1. A C-reducible Landsberg manifold (M,L), with dimension n ≥
3, is Berwaldian or Riemaniann.



AN INTRINSIC PROOF OF NUMATA’S THEOREM 155

Proof. Let (M,L) be a C-reducible Landsberg manifold. Hence, from Defini-

tion 2.4, we conclude that the Cartan hv-curvature P and P̂ vanish identically.
Consequently, using [12, Theorem 3.5(c)] taking into account the fact that
∇g = 0, we have

(4.1) (∇βZT)(X,Y ,W ) = (∇βWT)(X,Y , Z).

Contracting X with Y implies

(4.2) (∇βZ C)(W ) = (∇βW C)(Z).

Hence, for C-reducible manifold together with (4.1) and the property
h

∇ ℏ = 0,
we obtain

ℏ(Y ,Z)(∇βW C)(X) + ℏ(Z,X)(∇βW C)(Y )

= ℏ(Y ,W )(∇βZ C)(X) + ℏ(W,X)(∇βZ C)(Y ).

Contracting X with Z for both sides and using (4.2), one can show that

σ(x, y) ℏ(Y ,W ) + (∇βW C)(Y )− L−1 ℓ(W )(∇βη C)(Y )

= (∇βW C)(Y )− L−1 ℓ(Y )(∇βW C)(η) + (n− 1)(∇βW C)(Y ),

where σ(x, y) is the contracting X with Z for the term (∇βZ C)(X). From

which taking into account the fact that (∇βW C)(η) vanishes identically, we
get

(∇βW C)(Y ) = µ(x, y) ℏ(Y ,W ) ⇐⇒ ∇βW C = µ(x, y)ϕ(W ),(4.3)

with µ(x, y) := σ(x,y)
(n−1) and C(X) =: g(C,X).

In general, for Cartan connection [12, Theorem 3.4], we have

(∇βZS)(X,Y ,W ) = (∇γXP )(Z, Y ,W )− (∇γY P )(Z,X,W )

− S(P̂ (Z, Y ), X)W + S(P̂ (Z,X), Y )W

− P (T (Y , Z), X)W + P (T (X,Z), Y )W.

In case of Landsberg manifold, due to Definition 2.4(b), we conclude that

(∇βZS)(X,Y ,W ) = 0.

From which taking into account [12, Theorem 3.4], we get

g((∇βNT )(X,W ), T (Y ,Z)) + g(T (X,W ), (∇βNT )(Y , Z))

− g((∇βNT )(Y ,W ), T (X,Z))− g(T (Y ,W ), (∇βNT )(X,Z)) = 0.

Hence, for a C-reducible manifold taking into account (4.3), one can show that

(n+ 1)−1µ(x, y){ℏ(X,W )T(Y , Z,N) + ℏ(X,N)T(Y , Z,W )

+ ℏ(W,N)T(Y ,Z,X) + ℏ(Y , Z)T(X,W,N) + ℏ(Y ,N)T(X,W,Z)

+ ℏ(Z,N)T(X,W, Y )− ℏ(Y ,W )T(X,Z,N)− ℏ(Y ,N)T(X,Z,W )
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− ℏ(W,N)T(X,Z, Y )− ℏ(X,Z)T(Y ,W,N)− ℏ(X,N)T(Y ,W,Z)

− ℏ(Z,N)T(Y ,W,X)} = 0.

Contracting X with W , the above equation reduces to

µ(x, y) {(n− 3)T(Y , Z,N) + ℏ(Y ,Z)C(N)} = 0.

Again contracting Y with Z, we obtain

(4.4) (n− 2)µ(x, y)C(N) = 0.

Therefore, provided that n ≥ 3, we have two cases:
Case 1: If µ(x, y) ̸= 0, then the contracted torsion C vanishes. Hence, the
Cartan torsion T = 0 by reducibility property. Consequently, (M,L) is Rie-
mannian.
Case 2: If µ(x, y) = 0, then by Equation (4.3) the horizontal covariant deriva-
tives for the contracted torsion C vanishes identically. Hence, the horizontal
covariant derivative (∇βW T) = 0 by reducibility property, which means that

(M,L) is Berwald. This completes the proof. □

Proposition 4.2. If (M,L) is a Landsberg manifold of non zero scaler curva-
ture r, then it is a C-reducible manifold.

Proof. By [12, Theorem 4.6], we have:

(D◦
γX
R◦)(Y , Z,W ) = (D◦

βZ
P ◦)(Y ,X,W )− (D◦

βY
P ◦)(Z,X,W ).

Setting Z = η noting the facts that iηP
◦ = 0 and K ◦ β = 0, we obtain

(D◦
βηP

◦)(Y ,X,W ) = (D◦
γX
R◦)(Y , η,W ).

Since (M,L) is a Finsler manifold of non zero scaler curvature r, from the
above relation and Lemma 3.4, we get

(D◦
βηP

◦)(Y ,X,W )

= − 2L−3ℓ(X)ℏ(Y ,W )B(η) η − L−2(D◦
γX

ℏ)(η,W )B(Y ) η

+ L−2(D◦
γX

ℏ)(Y ,W )B(η) η + L−2ℏ(Y ,W )(D◦
γX
B)(η) η

+ L−2ℏ(Y ,W )B(η)D◦
γX
η − r (D◦

γX
ℏ)(η,W )ϕ(Y )

+ r ℏ(Y ,W )(D◦
γX
ϕ)(η) + L−2ℓ(X)ℓ(η)B(Y )ϕ(W )

− L−2ℓ(X)ℓ(Y )B(η)ϕ(W )− L−1ℓ(η)B(Y )(D◦
γX
ϕ)(W )

+ L−1ℓ(Y )B(η)(D◦
γX
ϕ)(W )− L−1(D◦

γX
ℓ)(η)B(Y )ϕ(W )

+ L−1(D◦
γX
ℓ)(Y )B(η)ϕ(W )− L−1ℓ(η)(D◦

γX
B)(Y )ϕ(W )

+ L−1ℓ(Y )(D◦
γX
B)(η)ϕ(W ) +A(Y ,W )(D◦

γX
ϕ)(η)

−A(η,W )(D◦
γX
ϕ)(Y ) + (D◦

γX
A)(Y ,W )ϕ(η)− (D◦

γX
A)(η,W )ϕ(Y ).
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Thus, using the facts that (D◦
βηP

◦)(Y ,X,W,Z) = g((D◦
βηP

◦)(Y ,X,W ), Z),
iηϕ = 0 = iηℏ, together with Lemmas 3.2, 3.3 and 3.4, after long calculations,
we have

(D◦
βηP

◦)(Y ,X,W,Z)

=
2

3
Lℓ(Z)[ℏ(X,W )D◦

γY
r + ℏ(Y ,W )D◦

γX
r

+ ℏ(X,Y )D◦
γW

r + 3rT(X,Y ,W )]− 1

3
[ℏ(Y , Z)M(X,W )

+ ℏ(X,Z)M(Y ,W ) + ℏ(W,Z)M(X,Y )],(4.5)

where

(4.6) M(X,Y ) := L ℓ(X)D◦
γY

r + L ℓ(Y )D◦
γX

r + L2D◦
γX
D◦

γY
r.

Putting Z = η, we get

(D◦
βηP

◦)(Y ,X,W, η) =
2

3
L2[ℏ(X,W )D◦

γY
r + ℏ(Y ,W )D◦

γX
r

+ ℏ(X,Y )D◦
γW

r + 3rT(X,Y ,W )].(4.7)

On the other hand, by [9], we have:

P ◦(X,Y )Z = P (X,Y )Z + (∇γY P̂ )(X,Z) + P̂ (T (Y ,X), Z) + P̂ (X,T (Y ,Z))

+ (∇βXT )(Y ,Z)− T (Y , P̂ (X,Z))− T (P̂ (X,Y ), Z).

Hence, using Definition 2.4 taking into account the fact that ∇βXg = 0, (M,L)

is landsberg if and only if P◦(Y ,X,W, η) vanishes identically. Consequently,
for a landsberg manifold, (4.7) reduces to

T(X,Y ,W ) =
−1

3 r
[ℏ(X,W )D◦

γY
r + ℏ(Y ,W )D◦

γX
r + ℏ(X,Y )D◦

γW
r],(4.8)

provided that r ̸= 0. Contracting Y with W , we obtain

(4.9) D◦
γX

r =
−3 r

(n+ 1)
C(X).

From which together with (4.8), we conclude that (M,L) is C-reducible. □

Theorem 4.3. If (M,L) is a Berwald manifold of non zero scaler curvature r
with n ≥ 3, then it is a Riemannian manifold of constant curvature.

Proof. Assume that (M,L) is a Berwald manifold of non zero scaler curvature
r with n ≥ 3. Then it is C-reducible. Also, the Berwald hv-curvature P ◦

vanishes identically and (4.8) holds good. Therefore (4.5) becomes

ℏ(Y ,Z)M(X,W ) + ℏ(X,Z)M(Y ,W ) + ℏ(W,Z)M(X,Y ) = 0.

Contracting Y with Z, we obtain

(n+ 1)M(X,W ) = 0.
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Hence, from (4.6), we conclude that

ℓ(X)D◦
γW

r + ℓ(W )D◦
γX

r + LD◦
γX
D◦

γW
r = 0.

From which together with (4.9), we have

(4.10) ℓ(X)C(W ) + ℓ(W )C(X) + L[(D◦
γX
C)(W )− 3

(n+ 1)
C(X)C(W )] = 0.

On the other hand, for a C-reducible Finsler space and using Proposition
2.2, one can show that

(∇γXC)(W ) = (D◦
γX
C)(W )− 1

(n+ 1)
{C2 ℏ(X,W ) + 2C(X)C(W )},

where C2 := C(C);C(X) =: g(C,X). Consequently, using Proposition 3.5 we
conclude that for a C-reducible Finsler manifold there exists a scalar ψ(x, y)
such that

ℓ(X)C(W ) + ℓ(W )C(X) + L[(D◦
γX
C)(W )− 2

(n+ 1)
C(X)C(W )]

= ψ(x, y) ℏ(X,W ),(4.11)

where ψ(x, y) := LC2

(n+1) + α(x, y). Now, from Eqs. (4.10) and (4.11), we get

L

(n+ 1)
C(X)C(W ) = ψ(x, y) ℏ(X,W ).

As the trace of L.H.S. (ℏ(X,W )) equals n − 1 ≥ 2 and the trace of R.H.S.
(C(X)C(W )) equals 1, then ψ(x, y) vanishes identically. Hence, the torsion
form C = 0, and by C-reducibility the Cartan torsion T vanishes. Therefore
(M,L) is a Riemannian manifold. Also, from the fact that the torsion form C
vanishes together (4.9), we conclude that

(4.12) D◦
γX

r = 0,

which means that the scalar curvature r vertically parallel. To prove that the
scalar curvature r is constant, we need to show that the scalar curvature r is
horizonally parallel as follows:

By (3.3), together with (4.12), we obtain

(4.13) R̂◦(X,Y ) = r L
{
ℓ(X)Y − ℓ(Y )X

}
.

By [12], we have

SX,Y ,Z {(D◦
βX
R◦)(Y , Z,W ) + P ◦(R̂◦(X,Y ), Z)W} = 0,

where SX,Y ,Z is the cyclic sum over X,Y , Z. Hence, by [12], the (v)hv-torsion

P̂ ◦ vanishes, it follows that

(4.14) SX,Y ,Z (D◦
βX
R̂◦)(Y , Z) = 0.
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In view of (4.13) and (4.14), Definition 2.3 and the fact that D◦
βX
ℓ = 0, we get

L(D◦
βX

r)(ℓ(Y )Z − ℓ(Z)Y ) + L(D◦
βY

r)(ℓ(Z)X − ℓ(X)Z)

+ L(D◦
βZ
r)(ℓ(X)Y − ℓ(Y )X) = 0.

Setting Z = η into the above equation, noting that ℓ(η) = L, we obtain

L(D◦
βX r)(ℓ(Y )η − LY ) + L(D◦

βY
r)(LX − ℓ(X)η)

+ L(D◦
βη r)(ℓ(X)Y − ℓ(Y )X) = 0.

Taking the trace of both sides with respect to Y , it follows that

(4.15) D◦
βX r = L−1(D◦

βη r)ℓ(X).

Applying the vertical covariant derivative with respect to Y on both sides of
(4.15), yields

ℓ(Y )D◦
βX

r + L(
v

D◦
h

D◦ r)(X,Y ) = L−1ℏ(X,Y )(D◦
βη r) + ℓ(X)(

v

D◦
h

D◦ r)(η, Y ).

From (4.12), noting that (
v

D◦
h

D◦ r)(X,Y ) = (
h

D◦
v

D◦ r)(Y ,X), the above rela-
tion reduces to (provided that n ≥ 3)

ℓ(Y )D◦
βX

r = L−1ℏ(X,Y )(D◦
βη r).

Setting Y = η into the above equation, noting that ℓ(η) = L and ℏ(·, η) = 0, it
follows that D◦

βX
r = 0. Consequently,

(4.16) D◦
βX

r = 0,

which means that the scalar curvature r is horizonally parallel. Now, from
(4.12) and (4.16), we conclude that r is constant. Consequently, the proof is
complete. □

Finally, we provide a global proof of the Numata’s theorem [6] for Finsler
manifold of a non-vanishing scalar curvature by incorporating previous results.

Theorem 4.4. If (M,L) is a Landsberg manifold of a non-vanishing scalar
curvature r with n ≥ 3, then it is a Riemannian manifold of constant curvature.

Proof. The proof follows from Theorem 4.1, Proposition 4.2 and Theorem 4.3.
□
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