• Title/Summary/Keyword: low swing

Search Result 261, Processing Time 0.027 seconds

The design of Fully Differential CMOS Operational Amplifier (Fully Differential CMOS 연산 증폭기 설계)

  • Ahn, In-Soo;Song, Seok-Ho;Choi, Tae-Sup;Yim, Tae-Soo;Sakong, Sug-Chin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.85-96
    • /
    • 2000
  • It is necessary that fully differential operational amplifier circuit should drive an external load in the VLSI design such as SCF(Switched Capacitor Filter), D/A Converter, A/D Converter, Telecommunication Circuit and etc. The conventional CMOS operational amplifier circuit has many problems according to CMOS technique. Firstly, Capacity of large loads are not able to operate well. The problem can be solve to use class AB stages. But large loads are operate a difficult, because an element of existing CMOS has a quadratic functional relation with input and output voltage versus output current. Secondly, Whole circuit of dynamic range decrease, because a range of input and output voltages go down according as increasing of intergration rate drop supply voltage. The problem can be improved by employing fully differential operational amplifier using differential output stage with wide output swing. In this paper, we proposed new current mirror has large output impedance and good current matching with input an output current and compared with characteristics for operational amplifier using cascoded current mirror. To obtain large output swing and low power consumption we suggest a fully differential operational amplifier. The circuit employs an output stage composed new current mirror and two amplifier stage. The proposed circuit is layout and circuit of capability is inspected through simulation program(SPICE3f).

  • PDF

The Optimization of $0.5{\mu}m$ SONOS Flash Memory with Polycrystalline Silicon Thin Film Transistor (다결정 실리콘 박막 트랜지스터를 이용한 $0.5{\mu}m$ 급 SONOS 플래시 메모리 소자의 개발 및 최적화)

  • Kim, Sang Wan;Seo, Chang-Su;Park, Yu-Kyung;Jee, Sang-Yeop;Kim, Yun-Bin;Jung, Suk-Jin;Jeong, Min-Kyu;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook;Hwang, Cheol Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.111-121
    • /
    • 2012
  • In this paper, a poly-Si thin film transistor with ${\sim}0.5{\mu}m$ gate length was fabricated and its electrical characteristics are optimized. From the results, it was verified that making active region with larger grain size using low temperature annealing is an efficient way to enhance the subthreshold swing, drain-induced barrier lowering and on-current characteristics. A SONOS flash memory was fabricated using this poly-Si channel process and its performances are analyzed. It was necessary to optimize O/N/O thickness for the reduction of electron back tunneling and the enhancement of its memory operation. The optimized device showed 2.24 V of threshold voltage memory windows which coincided with a well operating flash memory.

Design of Low Power 12Bit 80MHz CMOS D/A Converter using Pseudo-Segmentation Method (슈도-세그멘테이션 기법을 이용한 저 전력 12비트 80MHz CMOS D/A 변환기 설계)

  • Joo, Chan-Yang;Kim, Soo-Jae;Lee, Sang-Min;Kang, Jin-Ku;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.13-20
    • /
    • 2008
  • This paper describes the design of low power 12bit Digital-to-Analog Converter(D/A Converter) using Pseudo-Segmentation method which shows the conversion rate of 80MHz and the power supply of 1.8V with 0.18um CMOS n-well 1-poly 6-metal process for advanced wireless communication system. Pseudo-segmentation method used in binary decoder consists of simple parallel buffer is employed for low power because of simpler configuration than that of thermometer decoder. Also, using deglitch circuit and swing reduced drivel reduces a switching noise. The measurement results of the proposed low power 12bit 80MHz CMOS D/A Converter shows SFDR is 66.01dBc at sampling frequency 80MHz, input frequency 1MHz and ENOB is 10.67bit. Integral nonlinearity(INL) / Differential nonlinearity(DNL) have been measured ${\pm}1.6LSB/{\pm}1.2LSB$. Glich energy is measured $49pV{\cdot}s$. Power dissipation is 46.8mW at 80MHz(Maximum sampling frequency) at a 1.8V power supply.

Design of an 1.8V 8-bit 500MSPS Low-Power CMOS D/A Converter for UWB System (UWB 시스템을 위한 1.8V 8-bit 500MSPS 저 전력 CMOS D/A 변환기의 설계)

  • Lee, Jun-Hong;Hwang, Sang-Hoon;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.15-22
    • /
    • 2006
  • In this paper, 1.8V 8-bit 500MSPS Low-power CMOS Digital-to-Analog Converter(DAC) for UWB(Ultra Wide Band) Communication Systeme is proposed. The architecture of the DAC is based on a current steering 6+2 full matrix type which has low glitch and high linearity. In order to achieve a high speed and good performance, a current cell with a high output impedance and wide swing output range is designed. Further a thermometer decoder with same delay time and low-power switching decoder for high efficiency performance are proposed. The proposed DAC was implemented with TSMC 0.18um 1-poly 6-metal N-well CMOS technology. The measured SFDR was 49dB when the output frequency was 50MHz at 500MS/s sampling frequency. The measured INL and DNL were 0.9LSB and 0.3LSB respectively. The DAC power dissipation was 20mW and the effective chip area was $0.63mm^2$.

A Low Power SRAM using Supply Voltage Charge Recycling (공급전압 전하재활용을 이용한 저전력 SRAM)

  • Yang, Byung-Do;Lee, Yong-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.5
    • /
    • pp.25-31
    • /
    • 2009
  • A low power SRAM using supply voltage charge recycling (SVCR-SRAM) scheme is proposed. It divides into two SRAM cell blocks and supplies two different powers. A supplied power is $V_{DD}$ and $V_{DD}/2$. The other is $V_{DD}/2$ and GND. When N-bit cells are accessed, the charge used in N/2-bit cells with VDD and $V_{DD}/2$ is recycled in the other N/2-bit cells with $V_{DD}/2$ and GND. The SVCR scheme is used in the power consuming parts which bit line, data bus, word line, and SRAM cells to reduce dynamic power. The other parts of SRAM use $V_{DD}$ and GND to achieve high speed. Also, the SVCR-SRAM results in reducing leakage power of SRAM cells due to the body-effect. A 64K-bit SRAM ($8K{\times}8$bits) is implemented in a $0.18{\mu}m$ CMOS process. It saves 57.4% write power and 27.6% read power at $V_{DD}=1.8V$ and f=50MHz.

Small-Swing Low-Power SRAM Based on Source-Controlled 4T Memory Cell (소스제어 4T 메모리 셀 기반 소신호 구동 저전력 SRAM)

  • Chung, Yeon-Bae;Kim, Jung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.7-17
    • /
    • 2010
  • In this paper, an innovative low-power SRAM based on 4-transistor latch cell is described. The memory cells are composed of two cross-coupled inverters without access transistors. The sources of PMOS transistors are connected to bitlines while the sources of NMOS transistors are connected to wordlines. They are accessed by totally new read and write method which results in low operating power dissipation in the nature. Moreover, the design reduces the leakage current in the memory cells. The proposed SRAM has been demonstrated through 16-kbit test chip fabricated in a 0.18-${\mu}m$ CMOS process. It shows 17.5 ns access at 1.8-V supply while consuming dynamic power of $87.6\;{\mu}W/MHz$ (for read cycle) and $70.2\;{\mu}W/MHz$ (for write cycle). Compared with those of the conventional 6-transistor SRAM, it exhibits the power reduction of 30 % (read) and 42 % (write) respectively. Silicon measurement also confirms that the proposed SRAM achieves nearly 64 % reduction in the total standby power dissipation. This novel SRAM might be effective in realizing low-power embedded memory in future mobile applications.

Low-voltage Pentacene Field-Effect Transistors Based on P(S-r-BCB-r-MMA) Gate Dielectrics (P(S-r-BCB-r-MMA) 게이트 절연체를 이용한 저전압 구동용 펜타센 유기박막트랜지스터)

  • Koo, Song Hee;Russell, Thomas P.;Hawker, Craig J.;Ryu, Du Yeol;Lee, Hwa Sung;Cho, Jeong Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.551-554
    • /
    • 2011
  • One of the key issues in the research of organic field-effect transistors (OFETs) is the low-voltage operation. To address this issue, we synthesized poly(styrene-r-benzocyclobutene-r-methyl methacrylate) (P(S-r-BCB-r-MMA)) as a thermally cross-linkable gate dielectrics. The P(S-r-BCB-r-MMA) showed high quality dielectric properties due to the negligible volume change during the cross-linking. The pentacene FETs based on the 34 nm-thick P(S-r-BCB-r-MMA) gate dielectrics operate below 5 V. The P(S-r-BCB-r-MMA) gate dielectrics yielded high device performance, i.e. a field-effect mobility of $0.25cm^2/Vs$, a threshold voltage of -2 V, an sub-threshold slope of 400 mV/decade, and an on/off current ratio of ${\sim}10^5$. The thermally cross-linkable P(S-r-BCB-r-MMA) will provide an attractive candidate for solution-processable gate dielectrics for low-voltage OFETs.

A Temperature- and Supply-Insensitive 1Gb/s CMOS Open-Drain Output Driver for High-Bandwidth DRAMs (High-Bandwidth DRAM용 온도 및 전원 전압에 둔감한 1Gb/s CMOS Open-Drain 출력 구동 회로)

  • Kim, Young-Hee;Sohn, Young-Soo;Park, Hong-Jung;Wee, Jae-Kyung;Choi, Jin-Hyeok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.54-61
    • /
    • 2001
  • A fully on-chip open-drain CMOS output driver was designed for high bandwidth DRAMs, such that its output voltage swing was insensitive to the variations of temperature and supply voltage. An auto refresh signal was used to update the contents of the current control register, which determined the transistors to be turned-on among the six binary-weighted transistors of an output driver. Because the auto refresh signal is available in DRAM chips, the output driver of this work does not require any external signals to update the current control register. During the time interval while the update is in progress, a negative feedback loop is formed to maintain the low level output voltage ($V_OL$) to be equal to the reference voltage ($V_{OL.ref}$) which is generated by a low-voltage bandgap reference circuit. Test results showed the successful operation at the data rate up to 1Gb/s. The worst-case variations of $V_{OL.ref}$ and $V_OL$ of the proposed output driver were measured to be 2.5% and 7.5% respectively within a temperature range of $20^{\circ}C$ to $90^{\circ}C$ and a supply voltage range of 2.25V to 2.75V, while the worst-case variation of $V_OL$ of the conventional output driver was measured to be 24% at the same temperature and supply voltage ranges.

  • PDF

Design Optimization of Differential FPCB Transmission Line for Flat Panel Display Applications (평판디스플레이 응용을 위한 차동 FPCB 전송선 설계 최적화)

  • Ryu, Jee-Youl;Noh, Seok-Ho;Lee, Hyung-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.879-886
    • /
    • 2008
  • This paper addresses the analysis and the design optimization of differential interconnects for Low-Voltage Differential Signaling (LVDS) applications. Thanks to the differential transmission and the low voltage swing, LVDS offers high data rates and improved noise immunity with significantly reduced power consumption in data communications, high-resolution display, and flat panel display. We present an improved model and new equations to reduce impedance mismatch and signal degradation in cascaded interconnects using optimization of interconnect design parameters such as trace width, trace height and trace space in differential flexible printed circuit board (FPCB) transmission lines. We have carried out frequency-domain full-wave electromagnetic simulations, time-domain transient simulations, and S-parameter simulations to evaluate the high-frequency characteristics of the differential FPCB interconnects. The 10% change in trace width produced change of approximately 6% and 5.6% in differential impedance for trace thickness of $17.5{\mu}m$ and $35{\mu}m$, respectively. The change in the trace space showed a little change. We believe that the proposed approach is very helpful to optimize high-speed differential FPCB interconnects for LVDS applications.

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.