The design of Fully Differential CMOS Operational Amplifier

Fully Differential CMOS 연산 증폭기 설계

  • Ahn, In-Soo (Department of Electronics Engineering, Kookmin University) ;
  • Song, Seok-Ho (Department of Electronics Engineering, Kookmin University) ;
  • Choi, Tae-Sup (Department of Electronics Engineering, Kookmin University) ;
  • Yim, Tae-Soo (Korea Telecom Research & Development Center) ;
  • Sakong, Sug-Chin (Department of Electronics Engineering, Kookmin University)
  • Published : 2000.06.01

Abstract

It is necessary that fully differential operational amplifier circuit should drive an external load in the VLSI design such as SCF(Switched Capacitor Filter), D/A Converter, A/D Converter, Telecommunication Circuit and etc. The conventional CMOS operational amplifier circuit has many problems according to CMOS technique. Firstly, Capacity of large loads are not able to operate well. The problem can be solve to use class AB stages. But large loads are operate a difficult, because an element of existing CMOS has a quadratic functional relation with input and output voltage versus output current. Secondly, Whole circuit of dynamic range decrease, because a range of input and output voltages go down according as increasing of intergration rate drop supply voltage. The problem can be improved by employing fully differential operational amplifier using differential output stage with wide output swing. In this paper, we proposed new current mirror has large output impedance and good current matching with input an output current and compared with characteristics for operational amplifier using cascoded current mirror. To obtain large output swing and low power consumption we suggest a fully differential operational amplifier. The circuit employs an output stage composed new current mirror and two amplifier stage. The proposed circuit is layout and circuit of capability is inspected through simulation program(SPICE3f).

Fully Differential 연산 증폭기 회로는 SCF(Switched Capacitor Filter), D/A 컴버터, A/D 컨버터, 통신 회로 등의 VLSI 설계시 외부 부하 구동에 필수적이다. 기존의 CMOS 연산 증폭기 회로는 CMOS 기술에 따른 여러 가지 단점을 갖는데 우선 큰 부하 용량에 대한 구동 능력이 양호하지 못하고, 집적도의 증가에 따른 전원 전압의 감소로 인해 입출력 전압의 동작 특성이 저하되어 전체 회로의 동특성 법위가 감소된다. 이러한 단잠들을 개선하기 위하여 출력부의 출력 스윙을 늘릴 수 있는 차동 출력 구조를 사용한 회로가 Fully Differential 연산 증폭기 회로이며, 단일 출력 구조의 연산 증폭기 보다 스윙 폭이 향상된다. Fully Differential 연산 증폭기의 구성에서 전류 미러가 그 성능을 결정하며, 따라서 큰 출력 스윙과 안정된 회로 동작을 위해서는 출력 저항이 크고, 기준 전류와의 정합이 잘 되는 전류 미러의 설계가 중요하다. 본 논문에서는 큰 출력 저항과 기준 전류와의 정합 특성이 우수한 새로운 전류 미러를 제시하였다. 출력 스윙을 키우고 전력 소모를 줄이기 위해 새로운 전류 미러를 사용하여 2단 증폭 형태의 Fully Differential 연산 증폭기를 설계하였으며, 설계한 증폭기는 레이아웃으로 구현하여 시뮬레이션 프로그램(SPICE3f)을 통하여 성능을 검증하였다.

Keywords

References

  1. P. R. Gray, R. G. Meyer, 'Analysis and Design of Analog Integrated Circuit,' New York. John Willy, 1984
  2. Y. P. Tsividis, 'Design of MOS VLSI Circuits for Telecommunications,' New York. Prentice Hall, 1985
  3. R. Gregorian, G. C. Temas, 'Analog MOS Integrated Circuits for Signal Processing,' New York. John Willy, 1986
  4. P. E. Allen, D. R. Holberg, 'CMOS Analog Circuit Design,' New York. Holt, Rinehart and Wilston, 1987
  5. Y. P. Tsividis, 'Operation and Modeling of the MOS Transistor,' New York. McGraw-Hill, 1987
  6. P. R. Gray, and R. G. Meyer, 'MOS operational amplifier design - a tutorial overview,' IEEE Journal of Solid-State Circuits, SC-17, pp. 969-982, 1982 https://doi.org/10.1109/JSSC.1982.1051851
  7. T. Pletersek, J. Trontelj and I. Jones, 'High-performence designs with CMOS analog analog standard cells.' IEEE Journal of Solid-State Circuits. SC-21 , pp.215-1986
  8. C. A. Laber, C. F. Rahim and S. F. Dreyer, 'Design considerations for a high-performence $3{\mu}m$ CMOS analog standard cells,' IEEE Journal of Solid-State Circuits, SC-22, pp. 181-189, 1987
  9. S. Mutoh and J. Yamada, 'IV power supply high-speed digital circuit technology with multithreshold-voltage CMOS,' IEFE Journal of Solid-State Circuits, vol. 30, no. 8, pp. 847-854, Aug. 1995 https://doi.org/10.1109/4.400426
  10. T. Kawahara et al, 'Sub-threshold current reduction for decoded-driver by self reverse-biasing,' IEEE Journal of Solid-State Circuits, vol. 28, no. 8, pp. 847-854 Nov. 1993
  11. M. Suziki et al, 'A 1.5ns 32b CMOS ALU in double pass-transistor logic,' IEEE Journal of Solid-State Circuits, vol. SC-28, no. 11, pp. 1145-1151, Nov. 1993 https://doi.org/10.1109/4.245595
  12. P. C. Yu, and H. S. Lee 'A 2.5V 12b 5M sample/s pipelined CMOS ADC,' ISSCC Digest Technical Papers, pp. 314-315, Feb. 1996
  13. J. A. Fisher and R. Koch, 'A highly linear CMOS buffer amplifier,' IEEE Journal of Solid-State Circuits, SC-22, pp. 330-334, 1987 https://doi.org/10.1109/JSSC.1987.1052729
  14. R. Castello and P. R. Gray, 'A high performance micropower switched capacitor filter', IEEE Journal of Solid-State Circuits, SC-20, pp. 1122-1132, 1985 https://doi.org/10.1109/JSSC.1985.1052449
  15. M. Mikovic, 'Current gain high-frequency CMOS operational amplifiers.' IEEE Journal of Solid-State Circuits. SC-20. pp. 816-828, 1985
  16. G. A. Callewaert and W. M. Sansen, 'Class AB CMOS amplifiers with high efficiency,' IEEE Journal of Solid-State Circuits. SC-25, pp. 684 -691, 1990 https://doi.org/10.1109/4.102661
  17. K. E. Brehmer and J. B. Wieser, 'Large Swing CMOS Power Amplifier,' IEEE Journal of Solid-State Circuits. SC-18, pp.624-629, 1983 https://doi.org/10.1109/JSSC.1983.105201
  18. J. A. Fisher. 'A High-Performance CMOS Power Amplifier,' IEEE Journal of Solid-Stated Circuits, SC-20, pp.1200-1205, 1985 https://doi.org/10.1109/JSSC.1985.1052459
  19. R. Hogervorst, J. P. Tero, R. G. H. Eschauzier and J. H. Huijsing, 'A Compact Power Efficient 3V CMOS Rail-to R1i1 Input/Output Operational Amplifier for VLSI Cell Libraries,' IEEE International Solid State Circuit Conference, pp.244-245, 1994
  20. H. Khorramabadi, J. Anidjar, and T. R. Peterson. 'A Highly-Efficient CMOS Line Driver with 80dB Linearity for ISDN U-interface Applications,' IEEE International Solid State Circuit Conference. pp.192-193, 1992