Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.5.551

Low-voltage Pentacene Field-Effect Transistors Based on P(S-r-BCB-r-MMA) Gate Dielectrics  

Koo, Song Hee (Department of Organic Materials and Fiber Engineering, Soongsil University)
Russell, Thomas P. (Polymer Science and Engineering Department, University of Massachusetts)
Hawker, Craig J. (Materials Research Laboratory, University of California)
Ryu, Du Yeol (Department of Chemical and Biomolecular Engineering, Yonsei University)
Lee, Hwa Sung (Department of Chemical Engineering, Hanbat National University)
Cho, Jeong Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
Publication Information
Applied Chemistry for Engineering / v.22, no.5, 2011 , pp. 551-554 More about this Journal
Abstract
One of the key issues in the research of organic field-effect transistors (OFETs) is the low-voltage operation. To address this issue, we synthesized poly(styrene-r-benzocyclobutene-r-methyl methacrylate) (P(S-r-BCB-r-MMA)) as a thermally cross-linkable gate dielectrics. The P(S-r-BCB-r-MMA) showed high quality dielectric properties due to the negligible volume change during the cross-linking. The pentacene FETs based on the 34 nm-thick P(S-r-BCB-r-MMA) gate dielectrics operate below 5 V. The P(S-r-BCB-r-MMA) gate dielectrics yielded high device performance, i.e. a field-effect mobility of $0.25cm^2/Vs$, a threshold voltage of -2 V, an sub-threshold slope of 400 mV/decade, and an on/off current ratio of ${\sim}10^5$. The thermally cross-linkable P(S-r-BCB-r-MMA) will provide an attractive candidate for solution-processable gate dielectrics for low-voltage OFETs.
Keywords
P(S-r-BCB-r-MMA); organic field-effect transistors; pentacene; low voltage operation; stability;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M. J. Malachowski and J. Zmija, Opto-Electro. Rev., 18, 121 (2010).   DOI   ScienceOn
2 K. A. Singh, T. Young, R. D. McCullough, T. Kowalewski, and L. M. Porter, Adv. Funct. Mater., 20, 2216 (2010).   DOI   ScienceOn
3 B. Sun and H. Sirringhaus, J. Am. Chem. Soc., 128, 16231 (2006).   DOI   ScienceOn
4 Y. D. Park, S. G. Lee, H. S. Lee, D. Kwak, D. H. Lee, and K. Cho, J. Mater. Chem., 21, 2338 (2011).   DOI   ScienceOn
5 B. Brauer, A. Virkar, S. C. B. Mannsfeld, D. P. Bernstein, R. Kukreja, K. W. Chou, T. Tyliszczak, Z. Bao, and Y. Acremann, Chem. Mater., 22, 3693 (2010).   DOI   ScienceOn
6 H. S. Lee, D. H. Kim, J. H. Cho, Y. D. Park, J. S. Kim, and K. Cho, Adv. Funct. Mater., 16, 1859 (2006).   DOI   ScienceOn
7 Y. Yun, C. Pearson, and M. C. Petty, J. Appl. Phys., 105, 034508 (2009).   DOI   ScienceOn
8 N. G. Martinelli, M. Savini, L. Muccioli, Y. Olivier, F. Castet, C. Zannoni, D. Beljonne, and J. Cornil, Adv. Funct. Mater., 19, 3254 (2009).   DOI   ScienceOn
9 M. P. Walser, W. L. Kalb, T. Mathis, T. J. Brenner, and B. Batlogg, Appl. Phys. Lett., 94, 053303 (2009).   DOI   ScienceOn
10 X. Cheng, M. Caironi, Y. Y. Noh, J. Wang, C. Newman, H. Yan, A. Facchetti, and H. Sirringhaus, Chem. Mater., 22, 1559 (2010).   DOI   ScienceOn
11 Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, Appl. Phys. Lett., 88, 072101 (2006).   DOI   ScienceOn
12 H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang, and K. Cho, J. Am. Chem. Soc., 130, 10556 (2008).   DOI   ScienceOn