• 제목/요약/키워드: linear functional equation

검색결과 91건 처리시간 0.026초

On the hyers-ulam-rassias stability of the equation $f( -

  • Jung, Soon-Mo
    • 대한수학회보
    • /
    • 제33권4호
    • /
    • pp.513-519
    • /
    • 1996
  • The stability problem of functional equations has been originally raised by S. M. Ulam. In 1940, he posed the following problem: Give conditions in order for a linear mapping near an approximately additive mapping to exist (see [9]).

  • PDF

GENERALIZED HYERS-ULAM STABILITY OF FUNCTIONAL EQUATIONS

  • Kwon, Young Hak;Lee, Ho Min;Sim, Jeong Soo;Yang, Jeha;Park, Choonkil
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.387-399
    • /
    • 2007
  • In this paper, we prove the generalized Hyers-Ulam stability of the following linear functional equations f(x + iy) + f(x - iy) + f(y + ix) + f(y - ix) = 2f(x) + 2f(y) and f((1 + i)x) = (1 + i)f(x), and of the following quadratic functional equations f(x + iy) + f(x - iy) + f(y + ix) + f(y - ix) = 0 and f((1 + i)x) = 2if(x) in complex Banach spaces.

  • PDF

EXISTENCE FOR A NONLINEAR IMPULSIVE FUNCTIONAL INTEGRODIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS IN BANACH SPACES

  • Yan, Zuomao
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.681-696
    • /
    • 2011
  • In this paper, we consider the existence of mild solutions for a certain class of nonlinear impulsive functional evolution integrodifferential equation with nonlocal conditions in Banach spaces. A sufficient condition is established by using Schaefer's fixed point theorem combined with an evolution system. An example is also given to illustrate our result.

A NONLINEAR CONVEX SPLITTING FOURIER SPECTRAL SCHEME FOR THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE ENERGY

  • Kim, Junseok;Lee, Hyun Geun
    • 대한수학회보
    • /
    • 제56권1호
    • /
    • pp.265-276
    • /
    • 2019
  • For a simple implementation, a linear convex splitting scheme was coupled with the Fourier spectral method for the Cahn-Hilliard equation with a logarithmic free energy. However, an inappropriate value of the splitting parameter of the linear scheme may lead to incorrect morphologies in the phase separation process. In order to overcome this problem, we present a nonlinear convex splitting Fourier spectral scheme for the Cahn-Hilliard equation with a logarithmic free energy, which is an appropriate extension of Eyre's idea of convex-concave decomposition of the energy functional. Using the nonlinear scheme, we derive a useful formula for the relation between the gradient energy coefficient and the thickness of the interfacial layer. And we present numerical simulations showing the different evolution of the solution using the linear and nonlinear schemes. The numerical results demonstrate that the nonlinear scheme is more accurate than the linear one.

COCYCLE EQUATIONS VIA COCHAINS AND HYPERSTABILITY OF RELATED FUNCTIONAL EQUATIONS

  • Young Whan Lee
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권4호
    • /
    • pp.865-876
    • /
    • 2023
  • This paper presents properties of the cocycle equations via cochains on a semigroup. And then we offer hyperstability results of related functional equations using the properties of cocycle equations via cochains. These results generalize hyperstability results of a class of linear functional equation by Maksa and Páles. The obtained results can be applied to obtain hyperstability of various functional equations such as Euler-Lagrange type quadratic equations.

ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR STATIONARY LINEAR PROCESSES GENERATED BY ASSOCIATED PROCESSES

  • Kim, Tae-Sung;Ko, Mi-Hwa
    • 대한수학회보
    • /
    • 제40권4호
    • /
    • pp.715-722
    • /
    • 2003
  • A functional central limit theorem is obtained for a stationary linear process of the form $X_{t}=\;{\Sigma_{j=0}}^{\infty}a_{j}{\epsilon}_{t-j}, where {${\in}_{t}$}is a strictly stationary associated sequence of random variables with $E_{{\in}_t}{\;}={\;}0.{\;}E({\in}_t^2){\;}<{\;}{\infty}{\;}and{\;}{a_j}$ is a sequence of real numbers with (equation omitted). A central limit theorem for a stationary linear process generated by stationary associated processes is also discussed.

HYERS-ULAM-RASSIAS STABILITY OF QUADRATIC FUNCTIONAL EQUATION IN THE SPACE OF SCHWARTZ TEMPERED DISTRIBUTIONS

  • CHUNG JAEYOUNG
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제12권2호
    • /
    • pp.133-142
    • /
    • 2005
  • Generalizing the Cauchy-Rassias inequality in [Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.] we consider a stability problem of quadratic functional equation in the spaces of generalized functions such as the Schwartz tempered distributions and Sato hyperfunctions.

  • PDF

APPROXIMATELY ADDITIVE MAPPINGS OVER p-ADIC FIELDS

  • Park, Choonkil;Boo, Deok-Hoon;Rassias, Themistocles M.
    • 충청수학회지
    • /
    • 제21권1호
    • /
    • pp.1-14
    • /
    • 2008
  • In this paper, we prove the Hyers-Ulam-Rassias stability of the Cauchy functional equation f(x+y) = f(x)+f(y) and of the Jensen functional equation $2f(\frac{x+y}{2})=f(x)+f(y)$ over the p-adic field ${\mathbb{Q}}_p$. The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

  • PDF