Browse > Article
http://dx.doi.org/10.4134/BKMS.b180238

A NONLINEAR CONVEX SPLITTING FOURIER SPECTRAL SCHEME FOR THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE ENERGY  

Kim, Junseok (Department of Mathematics Korea University)
Lee, Hyun Geun (Department of Mathematics Kwangwoon University)
Publication Information
Bulletin of the Korean Mathematical Society / v.56, no.1, 2019 , pp. 265-276 More about this Journal
Abstract
For a simple implementation, a linear convex splitting scheme was coupled with the Fourier spectral method for the Cahn-Hilliard equation with a logarithmic free energy. However, an inappropriate value of the splitting parameter of the linear scheme may lead to incorrect morphologies in the phase separation process. In order to overcome this problem, we present a nonlinear convex splitting Fourier spectral scheme for the Cahn-Hilliard equation with a logarithmic free energy, which is an appropriate extension of Eyre's idea of convex-concave decomposition of the energy functional. Using the nonlinear scheme, we derive a useful formula for the relation between the gradient energy coefficient and the thickness of the interfacial layer. And we present numerical simulations showing the different evolution of the solution using the linear and nonlinear schemes. The numerical results demonstrate that the nonlinear scheme is more accurate than the linear one.
Keywords
nonlinear convex splitting scheme; Fourier spectral method; Cahn-Hilliard equation; logarithmic free energy; phase separation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. T. Cabral, J. S. Higgins, T. C. B. McLeish, S. Strausser, and S. N. Magonov, Bulk spinodal decomposition studied by atomic force microscopy and light scattering, Macromolecules 34 (2001), 3748-3756.   DOI
2 J. W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961), 795-801.   DOI
3 J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267.   DOI
4 L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun. 108 (1998), 147-158.   DOI
5 M. Cheng and A. D. Rutenberg, Maximally fast coarsening algorithms, Phys. Rev. E 72 (2005), 055701(R).   DOI
6 J.-W. Choi, H. G. Lee, D. Jeong, and J. Kim, An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Phys. A 388 (2009), no. 9, 1791-1803.   DOI
7 M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math. 63 (1992), no. 1, 39-65.   DOI
8 D. Jeong and J. Kim, A practical numerical scheme for the ternary Cahn-Hilliard system with a logarithmic free energy, Phys. A 442 (2016), 510-522.   DOI
9 D. J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, in Computational and mathematical models of microstructural evolution (San Francisco, CA, 1998), 39-46, Mater. Res. Soc. Sympos. Proc., 529, 1998.
10 H. Gomez, V. M. Calo, Y. Bazilevs, and T. J. Hughes, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 49-50, 4333-4352.   DOI
11 D. Jeong and J. Kim, Practical estimation of a splitting parameter for a spectral method for the ternary Cahn-Hilliard system with a logarithmic free energy, Math. Methods Appl. Sci. 40 (2017), no. 5, 1734-1745.   DOI
12 J. Kim, Phase-field models for multi-component fluid flows, Commun. Comput. Phys. 12 (2012), no. 3, 613-661.   DOI
13 D. Lee, J.-Y. Huh, D. Jeong, J. Shin, A. Yun, and J. Kim, Physical, mathematical, and numerical derivations of the Cahn-Hilliard equation, Comp. Mater. Sci. 81 (2014), 216-225.   DOI
14 The MathWorks, Inc., Natick, MA, USA.
15 J. Shin, D. Jeong, and J. Kim, A conservative numerical method for the Cahn-Hilliard equation in complex domains, J. Comput. Phys. 230 (2011), no. 19, 7441-7455.   DOI
16 S. Zhai, Z. Weng, and X. Feng, Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model, Appl. Math. Model. 40 (2016), no. 2, 1315-1324.   DOI
17 J. Shin, S. Kim, D. Lee, and J. Kim, A parallel multigrid method of the Cahn-Hilliard equation, Comp. Mater. Sci. 71 (2013), 89-96.   DOI
18 J. Shin, H. G. Lee, and J.-Y. Lee, Convex Splitting Runge-Kutta methods for phase-field models, Comput. Math. Appl. 73 (2017), no. 11, 2388-2403.   DOI
19 H. Song, Energy SSP-IMEX Runge-Kutta methods for the Cahn-Hilliard equation, J. Comput. Appl. Math. 292 (2016), 576-590.   DOI