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A NONLINEAR CONVEX SPLITTING FOURIER SPECTRAL
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LOGARITHMIC FREE ENERGY
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Abstract. For a simple implementation, a linear convex splitting scheme
was coupled with the Fourier spectral method for the Cahn–Hilliard equa-

tion with a logarithmic free energy. However, an inappropriate value of

the splitting parameter of the linear scheme may lead to incorrect mor-
phologies in the phase separation process. In order to overcome this

problem, we present a nonlinear convex splitting Fourier spectral scheme
for the Cahn–Hilliard equation with a logarithmic free energy, which is

an appropriate extension of Eyre’s idea of convex-concave decomposition

of the energy functional. Using the nonlinear scheme, we derive a useful
formula for the relation between the gradient energy coefficient and the

thickness of the interfacial layer. And we present numerical simulations

showing the different evolution of the solution using the linear and non-
linear schemes. The numerical results demonstrate that the nonlinear

scheme is more accurate than the linear one.

1. Introduction

When a homogeneous system at high temperature is quenched to an absolute
temperature θ below a critical temperature θc, phase separation takes place
[2, 3]. Figure 1 shows the evolution of spinodal morphology as seen by atomic
force microscopy topography of the microtomed films [1].

This phenomenon can be modeled by the Cahn–Hilliard (CH) equation with
a logarithmic free energy [2, 3]:

∂φ

∂t
= ∆

[
θ

2
ln

(
1 + φ

1− φ

)
− θcφ− ε2∆φ

]
, x ∈ Ω, 0 < t ≤ T,(1)
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Figure 1. Spinodal decomposition kinetics of polycarbonate
and polystyrene 50 : 50 at various times: (a) 50, (b) 100, (c)
300, (d) 500, (e) 700, and (f) 1000s. Reprinted with permission
from [1]. Copyright (2001) American Chemical Society.

where φ is the difference between the concentrations of the two components
in a mixture, ε > 0 is the gradient energy coefficient, Ω is a domain in
Rd (d = 1, 2, 3), and T is a final time. The CH equation (1) is derived from the
Ginzburg–Landau free energy functional:

E(φ) :=

∫
Ω

(
F (φ) +

ε2

2
|∇φ|2

)
dx,(2)

where the logarithmic free energy F (φ) is given by

F (φ) =
θ

2

[
(1 + φ) ln

(
1 + φ

2

)
+ (1− φ) ln

(
1− φ

2

)]
+
θc
2

(1− φ2).(3)

See the review paper [13] for the physical, mathematical, and numerical deriva-
tions for the CH equation.

The CH equation is a fourth-order nonlinear partial differential equation and
cannot generally be solved analytically, thus, numerical methods are commonly
used to study the dynamics of the CH equation. For the spatial discretization,
finite difference [10, 16, 18], finite element [7, 9], and Fourier spectral [4, 5, 17]
methods were used. Here, we employ the Fourier spectral method for the
spatial discretization. For a simple implementation, a linear convex splitting
scheme was coupled with the Fourier spectral method for the CH equation in
[11]. However, we observe through numerical simulations that an inappropri-
ate value of the splitting parameter of the linear scheme may lead to incorrect
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morphologies in the phase separation process. In order to overcome this prob-
lem, we present a nonlinear convex splitting Fourier spectral scheme for the
CH equation with a logarithmic free energy, which is an appropriate extension
of Eyre’s idea of convex-concave decomposition of the energy functional with
a polynomial free energy [8].

This paper is organized as follows. In Section 2, we describe the nonlinear
scheme for the CH equation with a logarithmic free energy. In Section 3, we
derive a useful formula for the relation between the ε value and the thickness
of the interfacial layer using the nonlinear scheme. And we briefly describe
a linear convex splitting scheme and present numerical simulations showing
the different evolution of the solution using the linear and nonlinear schemes.
Finally, conclusions are drawn in Section 4.

2. Numerical solution

We consider the CH equation (1) in two-dimensional periodic space Ω =
[0, L1] × [0, L2] for simplicity of description. Let N1 and N2 be positive inte-
gers, h = L1/N1 = L2/N2 be the space step size, and ∆t be the time step
size. Let φnl1l2 be an approximation of φ(xl1 , yl2 , t

n), where xl1 = l1h for
l1 = 0, 1, . . . , N1 − 1, yl2 = l2h for l2 = 0, 1, . . . , N2 − 1, and tn = n∆t. In
order to solve Eq. (1) with the periodic boundary condition, we employ the
discrete Fourier transform: for k1 = 0, 1, . . . , N1 − 1, k2 = 0, 1, . . . , N2 − 1,

φ̂k1k2 =
∑N1−1
l1=0

∑N2−1
l2=0 φl1l2e

−i(xl1
ξk1

+yl2ξk2), where ξk1 = 2πk1/L1 and ξk2 =

2πk2/L2.
A nonlinear convex splitting scheme for Eq. (1) is based on the observation

that the energy functional E(φ) in (2) can be split into convex and concave
parts:

E(φ) = Ec(φ)− Ee(φ) =

∫
Ω

(
Fc(φ) +

ε2

2
|∇φ|2

)
dx−

∫
Ω

Fe(φ) dx,

where Fc(φ) = θ
2

[
(1 + φ) ln

(
1+φ

2

)
+ (1− φ) ln

(
1−φ

2

)]
and Fe(φ) = − θc2 (1 −

φ2). Treating Ec(φ) implicitly and Ee(φ) explicitly [8], the following nonlinear
convex splitting scheme is obtained:

φn+1 − φn

∆t
= ∆

(
δEc(φn+1)

δφ
− δEe(φn)

δφ

)
= ∆

(
θ

2
ln

(
1 + φn+1

1− φn+1

)
− ε2∆φn+1 − θcφn

)
.(4)

The nonlinearity in Eq. (4) comes from the term ln
(

1+φn+1

1−φn+1

)
and this can be

handled using a Newton-type linearization

ln

(
1 + φn,m+1

1− φn,m+1

)
≈ ln

(
1 + φn,m

1− φn,m

)
+

2

1− (φn,m)2
(φn,m+1 − φn,m)
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for m = 0, 1, . . .. We then develop a Newton-type iterative method as

φn,m+1 −∆t∆

(
θ

1− (φn,m)2
φn,m+1 − ε2∆φn,m+1

)
= φn + ∆t∆

[
θ

2
ln

(
1 + φn,m

1− φn,m

)
− θ

1− (φn,m)2
φn,m − θcφn

]
,(5)

where φn,0 = φn, and we set φn+1 = φn,m+1 if a relative l2-norm of the

consecutive error
‖φn,m+1−φn,m‖

2

‖φn,m‖2
is less than a tolerance tol (is set to 10−8 in

this paper).
Equation (5) can be rewritten in the form

Aφn,m+1 = φn + ∆t∆

[
θ

2
ln

(
1 + φn,m

1− φn,m

)
− θφn,m

1− (φn,m)2
− θcφn

]
,(6)

where

A = 1 + ∆tF−1
(
ξ2
k1 + ξ2

k2

)
F θ

1− (φn,m)2
1 + ∆tε2F−1

(
ξ2
k1 + ξ2

k2

)2 F ,
where F denotes the discrete Fourier transform and F−1 its inverse transform.
In this paper, the biconjugate gradient (BICG) method is used to solve the
system (6) and the stopping criterion for the BICG iteration is that the relative
residual norm is less than tol (is set to 10−8 in this paper).

3. Numerical experiments

3.1. Relation between the ε value and the thickness of the interfacial
layer

For a polynomial free energy 1
4 (φ2 − 1)2, the equilibrium states are −1 and

1, and φ varies from −0.9 to 0.9 over a distance of about 2
√

2ε tanh−1(0.9).
Thus, it is well known that if we want this value to be about m grid points, then
εm = hm

2
√

2 tanh−1(0.9)
. This formula was verified in previous works [6,12,15,19].

However, for the logarithmic free energy F (φ) in (3), the equilibrium states
depend on the absolute temperature θ, thus, ε also depends on θ. For this case,
there is no known formula to the authors’ knowledge. In this section, we derive
a useful formula for the relation between the ε value and the thickness of the
interfacial layer for F (φ). Let φeq be a positive equilibrium state for F (φ) with
given θ and θc, i.e., F ′(−φeq) = F ′(φeq) = 0. Figure 2 shows φeq for various θ
with θc = 1.

In order to see the relation between the ε value and the thickness of the
interfacial layer, we take the initial condition as

φ(x, 0) =

{
0.8 if |x− 2| < 1,
−0.8 otherwise

on Ω = [0, 4]. Here, we use h = 4/100, ∆t = 0.001, and θc = 1, and define
an equilibrium state as an state when the discrete l2-norm of the difference
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Figure 2. φeq for various θ with θc = 1.

between φn+1 and φn becomes less than 10−6. Figures 3(a) and (b) show the
interfacial layer at the equilibrium state for various θ with ε = 0.5h and ε = h,
respectively. Table 1 lists the numbers of grid points in the interfacial layer
(from φ = −0.9φeq to φ = 0.9φeq). The results in Fig. 3 and Table 1 indicate
that ε depends not only on m, which is the number of grid points, but also on
θ.
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Figure 3. Interfacial layer at the equilibrium state for various
θ with (a) ε = 0.5h and (b) ε = h. Here, θc = 1 is used.
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Table 1. Numbers of grid points in the interfacial layer (from
φ = −0.9φeq to φ = 0.9φeq).

θ 0.3 0.4 0.6 0.7 0.8 0.9
ε = 0.5h 2 2 2 4 4 6
ε = h 4 4 6 6 8 12
ε = 1.5h 4 6 8 10 12 18

Using the data in Table 1 and the fit command in MATLAB [14], we derive
a fitting polynomial surface of degree 2 in θ and m:

(7)
ε(θ,m) =

h

10
(4.835θ2 − 3.752θm+ 0.005m2

− 4.01θ + 4.078m+ 0.693).

Figure 4 shows the polynomial surface (7) and the data (open circles) in Table
1. Equation (7) is a useful formula because if we have the θ value and want
m grid points to lie in the interfacial layer, it gives us an approximate value
of ε. Note that we can increase the highest degrees of the polynomial. For
convenience of exposition, we limit them to 2. Figure 5 shows the evolution
of φ(x, t) with ε(θ, 8) for various θ. It is observed that 8 grid points lie in the
interfacial layer (from φ = −0.9φeq to φ = 0.9φeq, this range is marked with
horizontal dashed lines).
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Figure 4. Surface fitting: ε(θ,m) = 0.1h(4.835θ2−3.752θm+
0.005m2 − 4.01θ + 4.078m+ 0.693).

3.2. Comparison with a linear convex splitting scheme

For a simple implementation, a linear convex splitting scheme was coupled
with the Fourier spectral method for the CH equation in [11]. The linear scheme
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(c) θ = 0.8
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Figure 5. Evolution of φ(x, t) with ε(θ, 8) for various θ. In
each subfigure, horizontal dashed lines represent the range
from φ = −0.9φeq to φ = 0.9φeq.

is based on the following splitting:

F (φ)

= Fc(φ)− Fe(φ)

=
s

2
φ2−

[
−θ

2

(
(1 + φ) ln

(
1 + φ

2

)
+(1− φ) ln

(
1− φ

2

))
− θc

2
(1− φ2)+

s

2
φ2

]
,

where s > 0 is the splitting parameter. For Fe(φ) to be convex, it requires that
F ′′e (φ) = s− C(θ, φ) ≥ 0, i.e., s ≥ C(θ, φ), where

C(θ, φ) =
θ

1− φ2
− θc.

Figure 6 shows C(θ, φeq) for various θ with θc = 1.
There is no maximum principle for the CH equation. However, from the

numerical experiments, the minimum and maximum values of φ are in the
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Figure 6. C(θ, φeq) for various θ with θc = 1.

neighborhood of the equilibrium states, −φeq and φeq. And we need to take
the value of s as small as possible to minimize the local discretization error [8].
Thus, it is reasonable to choose the value of s based on φeq as follows:

s = C(θ, ψ),(8)

where ψ = min[0.5(1+φeq), 1.1φeq] and 1.1 is a safety factor. Using the formula
(8) for the splitting parameter, we can avoid trial and error approach to find an
appropriate splitting parameter, which makes Fe(φ) be convex and minimizes
the local discretization error depending on the safety factor. Table 2 lists the
values of s for various θ with θc = 1.

Table 2. Values of s for various θ with θc = 1.

θ 0.3 0.4 0.6 0.7 0.8 0.9
s = C(θ, ψ) 115.0843 26.9245 5.6283 3.1378 1.0548 0.3515

We now consider the phase separation using the linear and nonlinear schemes.
The initial condition is φ(x, y, 0) = rand(x, y) on Ω = [0, 100]× [0, 100], where
rand(x, y) is a random number between −0.05 and 0.05, and h = ∆t = 1,
θ = 0.8, θc = 1, and ε = ε(θ, 8) are used. Figures 7(a) and (b) show the
evolution of φ(x, y, t) using the linear scheme with s = 1.0548 and 115.0843,
respectively. As mentioned in Table 2, the appropriate value of s for θ = 0.8 is
1.0548. Thus, we observe that the linear scheme with s = 1.0548 reasonably re-
veals the dynamics of morphology, whereas the linear scheme with s = 115.0843
leads to incorrect morphologies in the phase separation process. Figure 7(c)
shows the evolution of φ(x, y, t) using the nonlinear scheme, which is same as
that in Fig. 7(a).
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(a)

(b)

(c)

Figure 7. Evolution of φ(x, y, t) using (a) the linear scheme
with s = 1.0548, (b) the linear scheme with s = 115.0843, and
(c) the nonlinear scheme. Here, θ = 0.8, θc = 1, and ε = ε(θ, 8)
are used. The times are t = 100, 400, 700, and 1000 (from left
to right).

3.3. Effect of an average concentration

We examine the evolution from random nonequilibrium states with different
average concentrations. The initial condition is φ(x, y, 0) = φ̄ + rand(x, y) on
Ω = [0, 200] × [0, 200], and h = ∆t = 1, θ = 0.8, θc = 1, and ε(θ, 8) are
used. Figures 8 and 9 show the evolution of φ(x, y, t) with φ̄ = −0.3 and 0,
respectively. Depending on the value of φ̄, we have different patterns. Figure
10 shows the evolution of the energy with φ̄ = −0.3 and 0. We observe that all
the energy curves are nonincreasing in time.

4. Conclusion

In this paper, we presented the nonlinear convex splitting Fourier spectral
scheme for the CH equation with the logarithmic free energy, which is an appro-
priate extension of Eyre’s idea of convex-concave decomposition of the energy
functional. Using the nonlinear scheme, we derived the useful formula for the
relation between the ε value and the thickness of the interfacial layer. And
we observed through numerical simulations that an inappropriate value of the
splitting parameter of the linear scheme leads to incorrect morphologies in the
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t = 1100 t = 1500

t = 4000 t = 10000

Figure 8. Evolution of φ(x, y, t) with φ̄ = −0.3. Here, θ =
0.8, θc = 1, and ε = ε(θ, 8) are used. The times are shown
below each subfigure.

t = 100 t = 1000

t = 2500 t = 10000

Figure 9. Evolution of φ(x, y, t) with φ̄ = 0. Here, θ = 0.8,
θc = 1, and ε = ε(θ, 8) are used. The times are shown below
each subfigure.
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Figure 10. Evolution of the energy with φ̄ = −0.3 and 0.

phase separation process, whereas the nonlinear scheme reasonably reveals the
dynamics of morphology. As a future research direction, it would be interest-
ing to compare the dynamics of morphology using the CH equation with the
logarithmic free energy with real experimental data.
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