• Title/Summary/Keyword: instructional contexts

Search Result 59, Processing Time 0.024 seconds

Sociomathematical Norms and the Culture of the Mathematics Classroom (사회수학적 규범과 수학교실문화)

  • 방정숙
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.2
    • /
    • pp.273-289
    • /
    • 2001
  • Given that the culture of the mathematics classroom has been perceived as an important topic in mathematics education research, this paper deals with the construct of sociomathematical norms which can be used as an analytical tool in understanding classroom mathematical culture. This paper first reviews the theoretical foundations of the construct such as symbolic interactionism and ethnomethodology, and describes the actual classroom contexts in which social and sociomathematical norms were originally identified. This paper then provides a critical analysis of the previous studies with regard to sociomathematical norms. Whereas such studies analyze how sociomathematical norms become constituted and stabilized in the specific classroom contexts, they tend to briefly document sociomathematical norms mainly as a precursor to the detailed analysis of classroom mathematical practice. This paper reveals that the trend stems from the following two facts. First, the construct of sociomathematical norms evolved out of a classroom teaching experiment in which Cobb and his colleagues attempted to account for students' conceptual loaming as it occurred in the social context of an inquiry mathematics classroom. Second, the researchers' main role was to design instructional devices and sequences of specific mathematical content and to support the classroom teacher to foster students' mathematical learning using those sequences Given the limitations in terms of the utility of sociomathematical norms, this paper suggests the possibility of positioning the sociomathematical norms construct as more centrally reflecting the quality of students' mathematical engagement in collective classroom processes and predicting their conceptual teaming opportunities. This notion reflects the fact that the construct of sociomathematical norms is intended to capture the essence of the mathematical microculture established in a classroom community rather than its general social structure. The notion also allows us to see a teacher as promoting sociomathematical norms to the extent that she or he attends to concordance between the social processes of the classroom, and the characteristically mathematical ways of engaging. In this way, the construct of sociomathematical norms include, but in no ways needs to be limited to, teacher's mediation of mathematics discussions.

  • PDF

Students' Knowledge, Acceptance of Theory of Evolution and Epistemology: Cross-sectional Study of Grade Level Differences

  • Kim, Sun Young
    • Journal of Science Education
    • /
    • v.40 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • The purpose of this study is to explore the variables of knowledge, acceptance of theory of evolution and epistemology that could be keys for teaching and learning the theory of evolution within school contexts, and to suggest instructional tips for teaching evolution in relation to the grade levels of education. This cross-sectional study examined the grade level differences (8th, 11th, and preservice teachers) of four variables: evolutionary knowledge; acceptance of theory of evolution; and both domain-specific epistemology (nature of science in relation to evolution) and context-specific epistemology (scientific epistemological views) and their relationships. This study, then, built conceptual models of each grade level students' acceptance of theory of evolution among the factors of evolutionary knowledge and epistemology (both domain-specific and context-specific). The results showed that the scores of evolutionary knowledge, evolution in relation to NOS, and scientific epistemology increased as the grade levels of education go up(p<.05) except the scores of acceptance of theory of evolution(p>.05). In addition, the 8th graders' and the 11th graders' acceptance of evolutionary theory was most explained by 'evolution in relation to NOS', while the preservice teachers' acceptance of evolutionary theory was most explained by evolutionary knowledge. Interestingly, 'scientific epistemological views' were only included for the 8th graders, while evolutionary knowledge and 'evolution in relation to NOS' (context-specific epistemology) were included in explaining all the level of students' acceptance of evolutionary theory. This study implicated that when teaching and learning of the theory of evolution in school contexts, knowledge, acceptance of evolutionary theory and epistemology could be considered appropriately for the different grade levels of students.

  • PDF

Exploring Ways to Improve Science Education Area Exam in Secondary School Teacher Employment Test (중등 과학과 교사임용시험의 교과교육학 시험 개선 방안 탐색)

  • Kwak, Youngsun
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.89-96
    • /
    • 2020
  • This study explores the characteristics and ways to improve the area of science education in secondary teacher employment test (hereafter, TET). We investigated ways to differentiate second-phase science education tests from those of the first phase in the TET, and ways to improve practical tests such as designing instructional plans, teaching demonstrations, in-depth interviews, and science experiment tests. Major findings of the study include increasing the proportion of teaching demonstration while maintaining the test of designing instructional plans, which have a different focus from the paper-based exam in the first phase of the TET. Teaching demonstration tests, applying the credit of student-teaching to the TET, assessing teaching expertise in real classroom contexts focusing on subject teaching expertise, etc. along with science experiment tests, making the science experiment test compulsory for all municipal offices of education, and the necessity of evaluating the experimental design and teaching of scientific inquiry. Based on these results, developing and implementing tests such as teaching demonstrations, in-depth interviews, etc. at the local municipal education offices, introducing the apprentice teacher system, and introducing graduate schools of education were suggested.

An Analysis of Length and Time in the Elementary Mathematics Textbooks: Focused on the Instructional Components of Measurement and Key Competencies in Mathematics (길이와 시간에 관한 초등학교 수학 교과서 분석: 측정의 교수·학습 요소 및 수학 교과 역량을 중심으로)

  • Pang, JeongSuk;Kwon, MiSun;Kim, MinJeong;Choi, InYoung;SunWoo, Jin
    • School Mathematics
    • /
    • v.18 no.2
    • /
    • pp.301-322
    • /
    • 2016
  • Even though measurement is an important strand of elementary mathematics education, there has been lack of research in this field. This study analyzed topics related to length and time in a series of mathematics textbooks aligned to 2007 or 2009 revised mathematics curriculum. The analysis was focused on three aspects: (a) overall instructional components of measurement, (b) instructional components specific to the topics of measurement, and (c) key competencies in mathematics. The results of this study showed that many topics dealing with length and time were represented with relation to real-life contexts or other subjects. The meanings of measurement terms and the necessity of calculation were well explained but other aspects still had room for improvement when it comes to the necessity of measurement units, appropriate choice of units, and use of students' common misconceptions. Another noticeable result was that problem solving, communication, and reasoning among key competencies in mathematics have been emphasized in the mathematics textbooks. Based on these results, this study provides textbook writers with implications on what to further consider in dealing with length and time.

A Study on the Optimization Problem Solving utilizing the Quadratic Curve using the Dynamic Geometry Software (동적기하프로그램을 활용한 이차곡선 최적화 문제해결에 관한 연구)

  • Kim, Jung Soo;Jeon, Bo Hyun;Chung, Young Woo;Kim, Boo Yoon;Lee, Yan
    • East Asian mathematical journal
    • /
    • v.30 no.2
    • /
    • pp.149-172
    • /
    • 2014
  • The problems of optimization addressed in the high school curriculum are usually posed in real-life contexts. However, because of the instructional purposes, problems are artificially constructed to suit computation, rather than to reflect real-life problems. Those problems have thus limited use for teaching 'practicalities', which is one of the goals of mathematics education. This study, by utilizing 'GeoGebra', suggests the optimization problem solving related to the quadratic curve, using the contour-line method which contemplates the quadratic curve changes successively. By considering more realistic situations to supplement the limit which deals only with numerical and algebraic approach, this attempt will help students to be aware of the usefulness of mathematics, and to develop interests in mathematics, as well as foster students' integrated thinking abilities across units. And this allows students to experience a variety of math.

An Investigation on the Mathematical Instruction Utilizing Performance Tasks according to the Backward Design (수학 교과에서의 수행과제를 활용한 수업 방안 탐색 -백워드 이론을 기반으로-)

  • Hwang, Hye Jeang;Park, Hyun Ju
    • The Mathematical Education
    • /
    • v.55 no.1
    • /
    • pp.107-127
    • /
    • 2016
  • The purpose of this study was to explore the possibility of mathematical instruction through performance task activities based on the The Backward Design, which was suggested at first by Wiggins & McTighe in 1998. The Design deals with a performance assessment task involving the whole objective and its entire content of a lesson. Based on the Backward Design, this study established the mathematical instructional materials, which deal with the concept of 'the sector' taught in middle school, with one large performance task including three small tasks. It is important that in the lesson students be guided to achieve the several learning goals by themselves through reasoning activities. For this purpose, a formal interview was carried out by the subject of three middle school mathematics teachers. As a result, in order to implement the instruction utilizing the performance tasks more efficiently in future, it is required that a large performance task should be selected or developed including the content or problem contexts to be relevant with the real-life challenging situations. In addition, to make students enhance reasoning skills, it is strongly requested that the tasks including the utilization of supplementary materials such as technological devices or manipulatives be dealt with in a lesson.

How Do Elementary School Students Understand Tables? : From Functional Thinking Perspective (초등학생들은 표를 어떻게 이해할까? : 함수적 사고의 관점에서)

  • Kim, JeongWon
    • Education of Primary School Mathematics
    • /
    • v.20 no.1
    • /
    • pp.53-68
    • /
    • 2017
  • Although the table, as one of the representations for helping mathematics understanding, steadily has been shown in the mathematics textbooks, there have been little studies that focus on the table and analyze how the table may be used in understanding students' functional thinking. This study investigated the elementary school 5th graders' abilities to design function tables. The results showed that about 75% of the students were able to create tables for themselves, which shaped horizontal and included information only from the problem contexts. And the students had more difficulties in solving geometric growing pattern problems than story problems. Building on these results, this paper is expected to provide implications of instructional directions of how to use the table as 'function table'.

Conceptualization of an SSI-PCK Framework for Teaching Socioscientific Issues (과학기술 관련 사회쟁점 교육을 위한 교과교육학적 지식(SSI-PCK) 요소에 대한 탐색)

  • Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.539-550
    • /
    • 2016
  • The purpose of the study is to conceptualize SSI-PCK by identifying major components and sub-components to promote science teachers' confidence and knowledge on teaching SSIs. To achieve this, I conducted extensive literature reviews on teachers' perceptions on SSI, case studies of teachers addressing SSIs, SSI instructional strategies, etc. as well as PCK. Results indicate that SSI-PCK include six major components: 1) Orientation for Teaching SSI (OTS), 2) Knowledge of Instructional Strategies for Teaching SSI (KIS), 3) Knowledge of Curriculum (KC), 4) Knowledge of Students' SSI Learning (KSL), 5) Knowledge of Assessment in SSI Learning (KAS), and 6) Knowledge of Learning Contexts (KLC). OTS refers to teachers' instructional goals and intentions for teaching SSIs. Teachers often present a) activity-driven, b) knowledge and higher order thinking skills, c) application of science in everyday life, d) nature of science and technology, e) citizenship and f) activism orientations for teaching SSIs. KIS indicates teachers' instructional knowledge required for effectively designing and implementing SSI lessons. It includes a) SSI lesson design, b) utilizing progressive instructional strategies, and c) constructing collaborative classroom cultures. KC refers to teachers' knowledge on a) connection to science curriculum (horizontal/vertical) and b) connection to other subject matters. KSL refers to teachers' knowledge on a) learner experiences in SSI learning, b) difficulties in SSI learning, and c) SSI reasoning patterns. KAS indicates teachers' knowledge on a) dimensions of SSI learning to assess, and b) methods of assessing SSI learning. Finally, KLC refers to teachers' knowledge on the cultures of a) classrooms, b) schools, and c) community and society where they are located when teaching SSIs.

A Comparative Analysis of Capacity and Weight in Elementary Mathematics Textbooks of Korea, Japan, Singapore, and the US (한국, 일본, 싱가포르, 미국의 초등학교 수학 교과서에 제시된 들이와 무게 지도 방안에 대한 비교·분석)

  • Pang, JeongSuk;Kwon, MiSun;Kim, MinJeong;Choi, InYoung;SunWoo, Jin
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.4
    • /
    • pp.627-654
    • /
    • 2016
  • Despite the significance of the measurement strand in elementary mathematics education, it is not easy to teach it meaningfully. This study analyzed instructional methods related to capacity and weight in a series of mathematics textbooks of Korea, Japan, Singapore, and the US. The overall analysis was conducted in the following two aspects: (a) what and when to teach main learning content, and (b) how to teach the learning content tailored to the instructional components specific to the topics of measurement (i.e., the necessity of measurement unit, the meanings of measurement terms, appropriate choice of units, appropriate choice of measurement tools, and the necessity of calculation). The results of this study showed overall similarities in using real-life contexts to teach major topics on capacity and weight as well as emphasizing the relations among measurement units. However, noticeable differences were also analyzed in dealing with the meanings of measurement terms, appropriate choice of units, and appropriate choice of measurement tools. Based on these results, this study provides textbook writers with implications on what to further consider in dealing with capacity and weight.

The Development and Validation of Instructional Strategies Using the Advanced Laboratory Equipment(ALE) in Science High School Chemistry Classrooms: A Focus of UV-Visible and IR Spectrophotometer (과학고등학교 화학수업에서 첨단과학 실험기기 활용 수업 전략의 개발 및 타당화: 자외선-가시광선 및 적외선 분광기를 중심으로)

  • Jeon, Kyunghee;Park, Dahye;Jang, Nakhan;Park, Jongwook;Park, Jongseok
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.69-81
    • /
    • 2016
  • The purpose of this study was to find out the validation of instructional strategies using the Advanced Laboratory Equipment (ALE class) by investigating science high school students’ perception on ALE in chemistry classrooms and to consider the need for development of teaching materials on ALE class. 7 sessions of ALE including experiments with innovative equipment were developed and applied to 21 students in D Science High School. At the end of the sessions, questionnaire was given to the students. We also collected qualitative data by interviewing 9 students who participated in the questionnaire. We analyzed the data collected by In-depth interviews and students’ experimental reports. The result showed that ALE class was effective to enhance students’ understanding of learning concepts because the experimental time was shortened in real time data processing. Some students showed creative performance on solving scientific problems by using everyday materials in experimental process and developed perceptions of practical inquiry. Through this process, students’ positive attitudes and interests in science and heuristic inquiry skills were also enhanced. Developing ALE lesson materials will be helpful for students to understand science and technology and the domain of science in broader contexts.