• Title/Summary/Keyword: hot carrier degradation

Search Result 100, Processing Time 0.024 seconds

A Study on the Hot Carrier Effect Improvement by HLDBD (High-temperature Low pressure Dielectric Buffered Deposition)

  • Lee, Yong-Hui;Kim, Hyeon-Ho;Woo, Kyong-Whan;Kim, Hyeon-Ki;Yi, Jae-Young;Yi, Cheon-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1042-1045
    • /
    • 2002
  • The scaling of device dimension and supply voltage with high performance and reliability has been the main subject in the evolution of VLSI technology, The MOSFET structures become susceptible to high field related reliability problems such as hot-electron induced device degradation and dielectric breakdown. HLDBD(HLD Buffered Deposition) is used to decrease junction electric field in this paper. Also we compared the hot carrier characteristics of HLDBD and conventional.

  • PDF

Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection (Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석)

  • Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.

Device Characteristics and Hot Carrier Lifetime Characteristics Shift Analysis by Carbon Implant used for Vth Adjustment

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.288-292
    • /
    • 2013
  • In this paper, a carbon implant is investigated in detail from the perspectives of performance advantages and side effects for the thick n-type metal-oxide-semiconductor field-effect transistor (n-MOSFET). Threshold voltage ($V_{th}$) adjustment using a carbon implant significantly improves the $V_{th}$ mismatch performance in a thick (3.3-V) n-MOS transistor. It has been reported that a bad mismatch occurs particularly in the case of 0.11-${\mu}m$ $V_{th}$ node technology. This paper investigates a carbon implant process as a promising candidate for the optimal $V_{th}$ roll-off curve. The carbon implant makes the $V_{th}$ roll-off curve perfectly flat, which is explained in detail. Further, the mechanism of hot carrier injection lifetime degradation by the carbon implant is investigated, and new process integration involving the addition of a nitrogen implant in the lightly doped drain process is offered as its solution. This paper presents the critical side effects, such as Isub increases and device performance shifts caused by the carbon implant and suggests an efficient method to avoid these issues.

Channel Length에 따른 NMOSFET 소자의 Hot Carrier 열화 특성

  • Kim, Hyeon-Gi;Kim, Sang-Seop;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.240.1-240.1
    • /
    • 2013
  • 본 연구에서는 Symmetric NMOSFET의 channel length에 따른 전기적 특성 분석에 관한 연구를 진행하였다. 특성 분석에 사용된 소자의 Gate oxide 두께는 6 nm 이며, 채널 Width/Length는 각각 10/10 ${\mu}m$, 10/0.2 ${\mu}m$ 이다. Drain Avalanche Hot Carrier(DAHC) 테스트를 진행하기 위하여 각각 스트레스 조건을 추출하였고, 조건에 해당되는 스트레스를 1700초 동안 인가하였다. 스트레스 후, Channel length가 10 ${\mu}m$과 0.2 ${\mu}m$인 두 소자의 특성을 측정, 분석결과 10 ${\mu}m$의 소자의 경우 문턱전압(VT)과 Subthreshold swing (SS)의 변화가 없었지만 0.2 ${\mu}m$의 소자의 경우 0.42V의 (from 0.67V to 1.09V) 문턱전압 변화 (VTH)와 71 mV/dec (from 79 mV/dec to 150 mV/dec))의 Swing (SS)변화를 보여 스트레스 후에 Interface trap이 증가하였음을 알 수 있다. off-state leakage current를 측정 결과 0.2 ${\mu}m$ 의 경우 leakage current의 양이 증가하였음을 알 수 있고 이는 드레인 부근에 증가된 interface trap에 의한 현상으로 판단된다. 상기 결과와 같이 DAHC 스트레스에 의한 소자의 열화 현상은 Channel length가 짧을수록 더 크게 의존하는 것을 확인하였다.

  • PDF

The effect of GIDL and SILC on the performance degradation of the refresh circuit in DRAM (GIDL과 SILC가 DRAM refresh 회로의 성능저하에 미치는 영향)

  • 이병진;윤병오;홍성희;유종근;전석희;박종태
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.429-432
    • /
    • 1998
  • The impact of hot carrier induced gate leakage current on the refresh time of memory devices has been examined. The maximum allowable supply voltage for cell transistor has been determined form the degradation of the refresh time. The desing guideline for cell capacitors and refresh circuits has been suggested.

  • PDF

Improvement of NBTI Lifetime Utilizing Optimized BEOL Process Flow (새로운 BEOL 공정을 이용한 NBTI 수명시간 개선)

  • Ho Won-Joon;Han In-Shik;Lee Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.9-14
    • /
    • 2006
  • The dependence of NBTI lifetime on the BEOL processes such as sintering gas type and passivation layer has been characterized in depth. Then, optimized BEOL process scheme is proposed to improve NBTI lifetime. NBTI showed degradation due to the plasma enhanced nitride (PE-SiN) passivation film and $H_2$ sintering anneal. Then, new process scheme of $N_2$ annealing instead of $H_2$ annealing prior to PE-SiN deposition is proposed. The proposed BEOL process flow showed that NBTI lifetime can be improved a lot without degradation of device performance and NMOS hot carrier reliability.

Trade-off Characteristic between Gate Length Margin and Hot Carrier Lifetime by Considering ESD on NMOSFETs of Submicron Technology

  • Joung, Bong-Kyu;Kang, Jeong-Won;Hwang, Ho-Jung;Kim, Sang-Yong;Kwon, Oh-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Hot carrier degradation and roll off characteristics of threshold voltage ($V_{t1}$) on NMOSFETs as I/O transistor are studied as a function of Lightly Doped Drain (LDD) structures. Pocket dose and the combination of Phosphorus (P) and Arsenic (As) dose are applied to control $V_{t1}$ roll off down to the $10\%$ gate length margin. It was seen that the relationship between $V_{t1}$ roll off characteristic and substrate current depends on P dopant dose. For the first time, we found that the n-p-n transistor triggering voltage ($V_{t1}$) depends on drain current, and both $I_{t2}$ and snapback holding voltage ($V_{sp}$) depend on the substrate current by characterization with a transmission line pulse generator. Also it was found that the improved lifetime for hot carrier stress could be obtained by controlling the P dose as loosing the $V_{t1}$ roll off margin. This study suggests that the trade-off characteristic between gate length margin and channel hot carrier (CHC) lifetime in NMOSFETs should be determined by considering Electrostatic Discharge (ESD) characteristic.

GOLDD 구조를 갖는 LTPS TFT 소자의 전기적 특성 비교분석

  • Kim, Min-Gyu;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.40-40
    • /
    • 2009
  • The electrical characteristic of the conventional self-aligned polycrystalline silicon (poly-Si) TFTs are known to present several undesired effects such as large leakage current, kink effect and hot-carrier effects. In this paper, LTPS TFTs with different GOLDD length were fabricated and investigated the effect of the GOLDD. GOLDD length of 1, 1.5 and $2{\mu}m$ were used, while the thickness of the gate dielectrics($SiN_x/SiO_2$) was fixed at 65nm(40nm/25nm). The electrical characteristics show that the kink effect is reduced at the LTPS TFTs, and degradation from the hot-carrier effect was also decreased by increasing GOLDD length.

  • PDF

3D TCAD Analysis of Hot-Carrier Degradation Mechanisms in 10 nm Node Input/Output Bulk FinFETs

  • Son, Dokyun;Jeon, Sangbin;Kang, Myounggon;Shin, Hyungcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.191-197
    • /
    • 2016
  • In this paper, we investigated the hotcarrier injection (HCI) mechanism, one of the most important reliability issues, in 10 nm node Input/Output (I/O) bulk FinFET. The FinFET has much intensive HCI damage in Fin-bottom region, while the HCI damage for planar device has relatively uniform behavior. The local damage behavior in the FinFET is due to the geometrical characteristics. Also, the HCI is significantly affected by doping profile, which could change the worst HCI bias condition. This work suggested comprehensive understanding of HCI mechanisms and the guideline of doping profile in 10 nm node I/O bulk FinFET.

A Lifetime Prediction Modeling for PMOSFET degraded by Hot-Carrier (I) (Hot-Carrier로 인한 PMOSFET의 소자 수명시간 예측 모델링(I))

  • 정우표;류동렬;양광선;박정태;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.49-56
    • /
    • 1993
  • In this paper, we present a new lifetime prediction model for PMOSFET by using the correlation between transconductance degradation and substrate current influence. The suggested model is applied to a different channel structured PMOSFET, dgm/gm of both SC-PMOSFET and BC-PMOSFET appear with one straigth line about Qbib, therefore, this model is independent of channel structure. The suggested model is applied to a different drain structured SC-PMOSFET. Unlike S/D structured SC-PMOSFET, dgm/gm of LDD structured SC-PMOSFET appears with one straight line about Qb, therefore, this model is dependent of drain structure.

  • PDF