• 제목/요약/키워드: homotopy group

검색결과 70건 처리시간 0.024초

GOTTLIEB GROUPS AND SUBGROUPS OF THE GROUP OF SELF-HOMOTOPY EQUIVALENCES

  • Kim, Jae-Ryong;Oda, Nobuyuki;Pan, Jianzhong;Woo, Moo-Ha
    • 대한수학회지
    • /
    • 제43권5호
    • /
    • pp.1047-1063
    • /
    • 2006
  • Let $\varepsilon_#(X)$ be the subgroups of $\varepsilon(X)$ consisting of homotopy classes of self-homotopy equivalences that fix homotopy groups through the dimension of X and $\varepsilon_*(X) $ be the subgroup of $\varepsilon(X)$ that fix homology groups for all dimension. In this paper, we establish some connections between the homotopy group of X and the subgroup $\varepsilon_#(X)\cap\varepsilon_*(X)\;of\;\varepsilon(X)$. We also give some relations between $\pi_n(W)$, as well as a generalized Gottlieb group $G_n^f(W,X)$, and a subset $M_{#N}^f(X,W)$ of [X, W]. Finally we establish a connection between the coGottlieb group of X and the subgroup of $\varepsilon(X)$ consisting of homotopy classes of self-homotopy equivalences that fix cohomology groups.

POSTNIKOV SECTIONS AND GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

  • Lee, Kee-Young
    • 대한수학회보
    • /
    • 제41권3호
    • /
    • pp.393-401
    • /
    • 2004
  • In this paper, we apply the concept of the group \ulcorner(X,A) of self pair homotopy equivalences of a CW-pair (X, A) to the Postnikov system. By using a short exact sequence related to the group of self pair homotopy equivalences, we obtain the following result: for any Postnikov section X$\sub$n/ of a CW-complex X, the group \ulcorner(X$\sub$n/, A) of self pair homotopy equivalences on the pair (X$\sub$n/, X) is isomorphic to the group \ulcorner(X) of self homotopy equivalences on X. As a corollary, we have, \ulcorner(K($\pi$, n), M($\pi$, n)) ≡ \ulcorner(M($\pi$, n)) for each n$\pi$1, where K($\pi$,n) is an Eilenberg-Mclane space and M($\pi$,n) is a Moore space.

SELF-MAPS ON M(ℤq, n + 2) ∨ M(ℤq, n + 1) ∨ M(ℤq, n)

  • Ho Won Choi
    • 충청수학회지
    • /
    • 제36권4호
    • /
    • pp.289-296
    • /
    • 2023
  • When G is an abelian group, we use the notation M(G, n) to denote the Moore space. The space X is the wedge product space of Moore spaces, given by X = M(ℤq, n+ 2) ∨ M(ℤq, n+ 1) ∨ M(ℤq, n). We determine the self-homotopy classes group [X, X] and the self-homotopy equivalence group 𝓔(X). We investigate the subgroups of [Mj , Mk] consisting of homotopy classes of maps that induce the trivial homomorphism up to (n + 2)-homotopy groups for j ≠ k. Using these results, we calculate the subgroup 𝓔dim#(X) of 𝓔(X) in which all elements induce the identity homomorphism up to (n + 2)-homotopy groups of X.

REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE

  • Han, Sang-Eon
    • 호남수학학술지
    • /
    • 제29권1호
    • /
    • pp.101-118
    • /
    • 2007
  • The notions of digital k-homotopy equivalence and digital ($k_0,k_1$)-homotopy equivalence were developed in [13, 16]. By the use of the digital k-homotopy equivalence, we can investigate digital k-homotopy equivalent properties of Cartesian products constructed by the minimal simple closed 4- and 8-curves in $\mathbf{Z}^2$.

HOMOTOPY FIXED POINT SET $FOR \rho-COMPACT$ TORAL GROUP

  • Lee, Hyang-Sook
    • 대한수학회보
    • /
    • 제38권1호
    • /
    • pp.143-148
    • /
    • 2001
  • First, we show the finiteness property of the homotopy fixed point set of p-discrete toral group. Let $G_\infty$ be a p-discrete toral group and X be a finite complex with an action of $G_\infty such that X^K$ is nilpotent for each finit p-subgroup K of $G_\infty$. Assume X is $F_\rho-complete$. Then X(sup)hG$\infty$ is F(sub)p-finite. Using this result, we give the condition so that X$^{hG}$ is $F_\rho-finite for \rho-compact$ toral group G.

  • PDF

EQUIVARIANT HOMOTOPY EQUIVALENCES AND A FORGETFUL MAP

  • Tsukiyama, Kouzou
    • 대한수학회보
    • /
    • 제36권4호
    • /
    • pp.649-654
    • /
    • 1999
  • We consider the forgetful map from the group of equivariant self equivalences to the group of non-equivariant self equivalences. A sufficient condition for this forgetful map being a monomorphism is obtained. Several examples are given.

  • PDF

HOMOTOPY TYPE OF A 2-CATEGORY

  • Song, Yongjin
    • Korean Journal of Mathematics
    • /
    • 제18권2호
    • /
    • pp.175-183
    • /
    • 2010
  • The classical group completion theorem states that under a certain condition the homology of ${\Omega}BM$ is computed by inverting ${\pi}_0M$ in the homology of M. McDuff and Segal extended this theorem in terms of homology fibration. Recently, more general group completion theorem for simplicial spaces was developed. In this paper, we construct a symmetric monoidal 2-category ${\mathcal{A}}$. The 1-morphisms of ${\mathcal{A}}$ are generated by three atomic 2-dimensional CW-complexes and the set of 2-morphisms is given by the group of path components of the space of homotopy equivalences of 1-morphisms. The main part of the paper is to compute the homotopy type of the group completion of the classifying space of ${\mathcal{A}}$, which is shown to be homotopy equivalent to ${\mathbb{Z}}{\times}BAut^+_{\infty}$.

CERTAIN SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES OF THE WEDGE OF TWO MOORE SPACES

  • Jeong, Myung-Hwa
    • 대한수학회논문집
    • /
    • 제25권1호
    • /
    • pp.111-117
    • /
    • 2010
  • For a based, 1-connected, finite CW-complex X, we denote by $\varepsilon(X)$ the group of homotopy classes of self-homotopy equivalences of X and by $\varepsilon_#\;^{dim+r}(X)$ the subgroup of homotopy classes which induce the identity on the homotopy groups of X in dimensions $\leq$ dim X+r. In this paper, we calculate the subgroups $\varepsilon_#\;^{dim+r}(X)$ when X is a wedge of two Moore spaces determined by cyclic groups and in consecutive dimensions.

THE GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

  • Lee, Kee-Young
    • 대한수학회지
    • /
    • 제43권3호
    • /
    • pp.491-506
    • /
    • 2006
  • In this paper, we extend the concept of the group ${\varepsilon}(X)$ of self homotopy equivalences of a space X to that of an object in the category of pairs. Mainly, we study the group ${\varepsilon}(X,\;A)$ of pair homotopy equivalences from a CW-pair (X, A) to itself which is the special case of the extended concept. For a CW-pair (X, A), we find an exact sequence $1\;{\to}\;G\;{\to}\;{\varepsilon}(X,\;A)\;{to}\;{\varepsilon}(A)$ where G is a subgroup of ${\varepsilon}(X,\;A)$. Especially, for CW homotopy associative and inversive H-spaces X and Y, we obtain a split short exact sequence $1\;{\to}\;{\varepsilon}(X)\;{\to}\;{\varepsilon}(X{\times}Y,Y)\;{\to}\;{\varepsilon}(Y)\;{\to}\;1$ provided the two sets $[X{\wedge}Y,\;X{\times}Y]$ and [X, Y] are trivial.

SELF-PAIR HOMOTOPY EQUIVALENCES RELATED TO CO-VARIANT FUNCTORS

  • Ho Won Choi;Kee Young Lee;Hye Seon Shin
    • 대한수학회지
    • /
    • 제61권3호
    • /
    • pp.409-425
    • /
    • 2024
  • The category of pairs is the category whose objects are maps between two based spaces and morphisms are pair-maps from one object to another object. To study the self-homotopy equivalences in the category of pairs, we use covariant functors from the category of pairs to the group category whose objects are groups and morphisms are group homomorphisms. We introduce specific subgroups of groups of self-pair homotopy equivalences and put these groups together into certain sequences. We investigate properties of these sequences, in particular, the exactness and split. We apply the results to two special functors, homotopy and homology functors and determine the suggested several subgroups of groups of self-pair homotopy equivalences.