DOI QR코드

DOI QR Code

POSTNIKOV SECTIONS AND GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

  • Lee, Kee-Young (Department of Information and Mathematics, Korea University)
  • Published : 2004.08.01

Abstract

In this paper, we apply the concept of the group \ulcorner(X,A) of self pair homotopy equivalences of a CW-pair (X, A) to the Postnikov system. By using a short exact sequence related to the group of self pair homotopy equivalences, we obtain the following result: for any Postnikov section X$\sub$n/ of a CW-complex X, the group \ulcorner(X$\sub$n/, A) of self pair homotopy equivalences on the pair (X$\sub$n/, X) is isomorphic to the group \ulcorner(X) of self homotopy equivalences on X. As a corollary, we have, \ulcorner(K($\pi$, n), M($\pi$, n)) ≡ \ulcorner(M($\pi$, n)) for each n$\pi$1, where K($\pi$,n) is an Eilenberg-Mclane space and M($\pi$,n) is a Moore space.

Keywords

References

  1. M. Arkowitz, The group of self-homotopy equivalences- a survey, Lecture Notes in Math. 1425 (Springer, New York, 1990), 170–203
  2. M. Arkowitz and G. Lupton, On finiteness of subgroups of self-homotopy equivalences, Contemp. Math. 181 (1995), 1–25
  3. B. Gray, Homotopy theory, Academic press, Inc., New York, 1975
  4. P. Hilton, Homotopy theory and Duality, Gordon and Beach, New York, 1965
  5. K. Y. Lee, The group of self pair homotopy equivalences, Preprint
  6. K. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136 (1989) 293–301
  7. J. Rutter, The group of self equivalence classes of CW-complexes, Math. Proc. Cambridge Philos. Soc. 93 (1983), 275–293
  8. N. Sawashita, On the group of self-equivalences of the product spheres, Hiroshima Math. J. 5 (1975), 69–86
  9. A. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789–802
  10. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966