JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **36**, No. 4, November 2023 http://dx.doi.org/10.14403/jcms.2023.36.4.289

SELF-MAPS ON
$$M(\mathbb{Z}_q, n+2) \lor M(\mathbb{Z}_q, n+1) \lor M(\mathbb{Z}_q, n)$$

HO WON CHOI

ABSTRACT. When G is an abelian group, we use the notation M(G, n) to denote the Moore space. The space X is the wedge product space of Moore spaces, given by $X = M(\mathbb{Z}_q, n+2) \vee M(\mathbb{Z}_q, n+1) \vee M(\mathbb{Z}_q, n)$. We determine the self-homotopy classes group [X, X] and the self-homotopy equivalence group $\mathcal{E}(X)$. We investigate the subgroups of $[M_j, M_k]$ consisting of homotopy classes of maps that induce the trivial homomorphism up to (n+2)-homotopy groups for $j \neq k$. Using these results, we calculate the subgroup $\mathcal{E}_{\sharp}^{dim}(X)$ of $\mathcal{E}(X)$ in which all elements induce the identity homomorphism up to (n+2)-homotopy groups of X.

1. Introduction

For a based, finite CW-complex X, we denote by [X, X] the set of homotopy classes of self-maps on X and by $\mathcal{E}(X)$ the group of homotopy classes of self-homotopy equivalences of X. Furthermore, if X is either an H-space or co-H-space then [X, X] has the group structure. For surveys of the known results and applications of $\mathcal{E}(X)$, see [2] and [7]. The subgroup $\mathcal{E}_{\sharp}^{dim+r}(X)$ of $\mathcal{E}(X)$ consist of self-homotopy equivalences which induce the identity homomorphism on the homotopy groups of X in dimensions $\leq \dim X + r$. Many authors have studied $\mathcal{E}_{\sharp}^{dim+r}(X)$ and so see [3], [4] and [6]. When G is an abelian group, we let M(G, n)denote the Moore space. The space X is the wedge product space of Moore-spaces such that $X = M(\mathbb{Z}_q, n+2) \vee M(\mathbb{Z}_q, n+1) \vee M(\mathbb{Z}_q, n)$. In this paper, we study [X, X], $\mathcal{E}(X)$ and $\mathcal{E}_{\sharp}^{dim}(X)$. We determine [X, X]and $\mathcal{E}(X)$. By Lemma 1, we have

$$X, X] \equiv \bigoplus_{j,k=1,2,3} [M_j, M_k].$$

Received August 17, 2023; Accepted November 14, 2023.

²⁰²⁰ Mathematics Subject Classification: Primary 55P10, Secondary 55Q05, 55Q20.

Key words and phrases: Self-homotopy equivalence, Moore space, Self-closeness number.

By Theorem 3, $\mathcal{E}(X)$ is the isomorphic to

$$\mathcal{E}(M_1) \oplus [M_2, M_1] \oplus [M_3, M_1]$$

$$\oplus [M_1, M_2] \oplus \mathcal{E}(M_2) \oplus [M_3, M_2]$$

$$\oplus 0 \oplus [M_2, M_3] \oplus \mathcal{E}(M_3).$$

Depending on q, [X, X] and $\mathcal{E}(X)$ may appear differently. By Remark 1 and 3, we calculate special cases. Now, we calculate $\mathcal{E}_{\sharp}^{dim}(X)$. First of all, we investigate the subgroups $Z_{\sharp}^{n+2}[M_j, M_k]$ of $[M_j, M_k]$ consisting of homotopy classes of maps that induce the trivial homomorphism up to (n + 2)-homotopy groups for $j \neq k$. By Remark 4 and Lemma 2, we have

	q is odd	$q \equiv 2 \pmod{4}$	$q \equiv 0 \pmod{4}$
$Z^{n+2}_{\sharp}[M_2, M_1]$	\mathbb{Z}_q	0	0
$Z^{n+2}_{\sharp}[M_3, M_2]$	\mathbb{Z}_q	0	0
$Z^{n+2}_{\sharp}[M_1, M_2]$	0	\mathbb{Z}_2	$\mathbb{Z}_2\oplus\mathbb{Z}_2$
$Z^{n+2}_{\sharp}[M_2, M_3]$	0	0	0
$Z^{n+2}_{\sharp}[M_1, M_3]$	$\mathbb{Z}_{(q,24)}$	$\mathbb{Z}_{(q,24)}\oplus\mathbb{Z}_2$	$\mathbb{Z}_{(q,24)}\oplus\mathbb{Z}_2$

Using this result, we have determined $\mathcal{E}^{dim}_{\sharp}(X)$. By Theorem 4, we see that

	$\mathcal{E}^{dim}_{\sharp}(X)$		
q: odd	$\mathbb{Z}_{q}\oplus(\mathbb{Z}_{(q,24)})\oplus\mathbb{Z}_{q}$		
$q \equiv 2 \pmod{4}$	$\mathbb{Z}_2 \oplus (\mathbb{Z}_{(q,24)} \oplus \mathbb{Z}_2) \oplus \mathbb{Z}_2$		
$q \equiv 0 \pmod{4}$	$\mathbb{Z}_2 \oplus (\mathbb{Z}_{(q,24)} \oplus \mathbb{Z}_2) \oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_2)$		

2. Preliminaries

In this section, we present some propositions to use.

PROPOSITION 1 ([1]).
(1)
$$\pi_n(M(\mathbb{Z}_q, n)) \cong \mathbb{Z}_q$$
 for all q .
(2) $\pi_{n+1}(M(\mathbb{Z}_q, n)) \cong \begin{cases} 0 & \text{if } q \text{ is odd,} \\ \mathbb{Z}_2 & \text{if } q \text{ is even.} \end{cases}$
(3) $\pi_{n+2}(M(\mathbb{Z}_q, n)) \cong \begin{cases} 0 & \text{if } q \text{ is odd,} \\ \mathbb{Z}_4 & \text{if } q \equiv 2 \pmod{4}, \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 & \text{if } q \equiv 0 \pmod{4}. \end{cases}$

Self-maps on $M(\mathbb{Z}_q, n+2) \vee M(\mathbb{Z}_q, n+1) \vee M(\mathbb{Z}_q, n)$

(4)
$$\pi_{n+3}(M(\mathbb{Z}_q, n)) \cong \begin{cases} \mathbb{Z}_{(q,24)} & \text{if } q \text{ is odd,} \\ \mathbb{Z}_{(q,24)} \oplus \mathbb{Z}_2 & \text{if } q \equiv 2 \pmod{4}, \\ \mathbb{Z}_{(q,24)} \oplus \mathbb{Z}_2 & \text{if } q \equiv 0 \pmod{4}. \end{cases}$$

Proposition 2([1]).

$$(1) [M(\mathbb{Z}_{q}, n-1), M(\mathbb{Z}_{q}, n)] \cong \mathbb{Z}_{q} \text{ for all } q.$$

$$(2) [M(\mathbb{Z}_{q}, n), M(\mathbb{Z}_{q}, n)] \cong \begin{cases} \mathbb{Z}_{q} & \text{if } q \text{ is odd,} \\ \mathbb{Z}_{2q} & \text{if } q \equiv 2 \pmod{4}, \\ \mathbb{Z}_{q} \oplus \mathbb{Z}_{2} & \text{if } q \equiv 0 \pmod{4}. \end{cases}$$

$$(3) [M(\mathbb{Z}_{q}, n+1), M(\mathbb{Z}_{q}, n)] \cong \begin{cases} 0 & \text{if } q \text{ is odd,} \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text{if } q \equiv 2 \pmod{4}, \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text{if } q \equiv 2 \pmod{4}, \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text{if } q \equiv 0 \pmod{4}. \end{cases}$$

$$(4) [M(\mathbb{Z}_{q}, n+2), M(\mathbb{Z}_{q}, n)] \cong \begin{cases} \mathbb{Z}_{q} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{q, 24} & \text{if } q \equiv 0 \pmod{4}. \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{q, 24} & \text{if } q \equiv 2 \pmod{4}, \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{q, 24} & \text{if } q \equiv 0 \pmod{4}. \end{cases}$$

PROPOSITION 3 ([3]). If X is (k-1)-connected, Y is $(\ell-1)$ -connected and, further, if $k, \ell \geq 2$ and dim $P < k + \ell - 1$, then the projections $X \vee Y \to X$ and $X \vee Y \to Y$ induce a bijection :

$$[P, X \lor Y] \to [P, X] \oplus [P, Y].$$

THEOREM 1 ([3]). Let M(G, n) be a Moore space. Then

$$\mathcal{E}^{\infty}_*(M(G,n)) \cong \oplus^{(r+s)s} \mathbb{Z}_2$$

where r is the rank of G and s is the number of 2-torsion sums of G.

THEOREM 2 ([3]). Let M(G, n) be a Moore space. Then $\mathcal{E}^n(M(C, n)) \cong \mathcal{E}^\infty(M(C, n))$

$$\mathcal{E}^{n}_{\sharp}(M(G,n)) \cong \mathcal{E}^{n}_{\ast}(M(G,n))$$
$$\mathcal{E}^{n+1}_{\sharp}(M(G,n)) \cong 1, \text{ if } n > 3.$$

For any non-negative integer n, $\mathcal{A}^n_{\sharp}(X)$ consists of homotopy classes of self-map of X that induce an automorphism from $\pi_i(X)$ to $\pi_i(X)$ for $i = 0, 1, \dots, n$. $\mathcal{A}^k_{\sharp}(X)$ is a submonoid of [X, X] and always contains $\mathcal{E}(X)$. If $n = \infty$, we briefly denote $\mathcal{A}^{\infty}_{\sharp}(X)$ as $\mathcal{A}_{\sharp}(X)$. If k < n, then $\mathcal{A}^n_{\sharp}(X) \subseteq \mathcal{A}^k_{\sharp}(X)$; thus, we have the following chain by inclusion:

$$\mathcal{E}(X) \subseteq \mathcal{A}_{\sharp}(X) \subseteq \dots \subseteq \mathcal{A}_{\sharp}^{1}(X) \subseteq \mathcal{A}_{\sharp}^{0}(X) = [X, X].$$

DEFINITION 1 ([5]). The self-closeness number of X is the minimum number n such that $\mathcal{A}^n_{\sharp}(X) = \mathcal{E}(X)$, and is denoted by $N\mathcal{E}(X)$. If the minimum number n does not exist such that $\mathcal{A}^n_{\sharp}(X) = \mathcal{E}(X)$, then we write $N\mathcal{E}(X) = \infty$.

PROPOSITION 4 ([5]). $N\mathcal{E}(M(G, n)) = n$ for $n \ge 3$.

Let f be a map from X to Y.

- $\pi_k(f) : \pi_k(X) \to \pi_k(Y)$ is a homomorphism from k-dimensional homotopy group of X to k-dimensional homotopy group of Y.
- $\pi_{\leq k}(f) : \pi_{\leq k}(X) \to \pi_{\leq k}(Y)$ are homomorphisms up to k-dimensional homotopy group.
- $H_k(f): H_k(X) \to H_k(Y)$ is a homomorphism from k-dimensional homology group of X to k-dimensional homology group of Y.
- $f^{\sharp}: [Y, Z] \to [X, Z]$ for any Z.

3. Self-maps on $M(\mathbb{Z}_q, n+2) \vee M(\mathbb{Z}_q, n+1) \vee M(\mathbb{Z}_q, n)$

For $n \geq 5$, we let $X = M(\mathbb{Z}_q, n+2) \vee M(\mathbb{Z}_q, n+1) \vee M(\mathbb{Z}_q, n)$. We determine the groups [X, X], $\mathcal{E}(X)$ and $\mathcal{E}^{dim}_{\sharp}(X)$. From now on, we set $M_1 = M(\mathbb{Z}_q, n+2)$, $M_2 = M(\mathbb{Z}_q, n+1)$, $M_3 = M(\mathbb{Z}_q, n)$ and $X = M_1 \vee M_2 \vee M_3$.

LEMMA 1. $[X, X] \equiv \bigoplus_{j,k=1,2,3} [M_j, M_k].$

Proof. By Proposition 3, we have $[X, X] \equiv \bigoplus_{j,k=1,2,3} [M_j, M_k]$. \Box

Now, we introduce a notation

$$\begin{split} [X,X] &\equiv & [M_1,M_1] \oplus [M_2,M_1] \oplus [M_3,M_1] \\ &\oplus [M_1,M_2] \oplus [M_2,M_2] \oplus [M_3,M_2] \\ &\oplus [M_1,M_3] \oplus [M_2,M_3] \oplus [M_3,M_3]. \end{split}$$

Since $[M_3, M_1] = 0$,

$$\begin{aligned} [X,X] &\equiv & [M_1,M_1] \oplus [M_2,M_1] \oplus 0 \\ &\oplus [M_1,M_2] \oplus [M_2,M_2] \oplus [M_3,M_2] \\ &\oplus [M_1,M_3] \oplus [M_2,M_3] \oplus [M_3,M_3] \end{aligned}$$

REMARK 1. Let q be an odd. By Proposition 2, we have

$$[X, X] \equiv \mathbb{Z}_q \oplus \mathbb{Z}_q \oplus 0$$
$$\oplus 0 \oplus \mathbb{Z}_q \oplus \mathbb{Z}_q$$
$$\oplus \mathbb{Z}_{(q, 24)} \oplus 0 \oplus \mathbb{Z}_q$$

Let $j, k \in \{1, 2, 3\}$ and $f \in [X, X]$.

- $i_j: M_j \to X$ is the inclusion.
- $p_k: X \to M_k$ is the projection.
- $f_{kj}: J \to K$ where $f_{kj} = p_k \circ f \circ i_j$.

PROPOSITION 5. The function θ which assigns to each $f \in [X, X]$, the 3×3 matrix

$$\theta(f) = \begin{pmatrix} f_{11} & f_{12} & 0\\ f_{21} & f_{22} & f_{23}\\ f_{31} & f_{32} & f_{33} \end{pmatrix},$$

where $f_{kj} \in [M_j, M_k]$ is bijective. In addition,

(1) $\theta(f+g) = \theta(f) + \theta(g)$, so θ is an isomorphism $[X, X] \to \bigoplus_{j,k=1,2,3} [M_j, M_k]$. (2) $\theta(f \circ g) = \theta(f)\theta(g)$ where $f \circ g$ denotes composition in [X, X] and $\theta(f)\theta(g)$ denotes matrix multiplication.

(3) If $\alpha_k : \pi_k(M_1) \oplus \pi_k(M_2) \oplus \pi_k(M_3) \to \pi_k(M_1 \vee M_2 \vee M_3)$ and $\beta_k : \pi_k(M_1 \vee M_2 \vee M_3) \to \pi_k(M_1) \oplus \pi_k(M_2) \oplus \pi_k(M_3)$ are the homomorphism induced by the inclusions and projections, respectively. then $\beta_k \circ \pi_k(f) \circ \alpha_k(x, y, z) = (\pi_k(f_{11})(x) + \pi_k(f_{12})(y) + \pi_k(f_{13})(z), \pi_k(f_{21})(x) + \pi_k(f_{22})(y) + \pi_k(f_{23})(z), \pi_k(f_{31})(x) + \pi_k(f_{32})(y) + \pi_k(f_{33})(z))$ for $x \in \pi_k(M_1), y \in \pi_k(M_2)$ and $z \in \pi_k(M_3)$.

Proof. By Lemma 1, $[X, X] \equiv \bigoplus_{j,k=1,2,3} [M_j, M_k]$. The rest of proofs are straightforward and hence omitted.

By Proposition 3, we have the following proposition.

PROPOSITION 6. $\pi_k(X) \cong \pi_k(M_1) \oplus \pi_k(M_2) \oplus \pi_k(M_3)$ for $k \leq 2n$. REMARK 2. By [4, Remark 3.1], there is the following table.

$$\pi_k(M_1) \begin{vmatrix} k < n+2 \\ 0 \end{vmatrix} \begin{vmatrix} k = n+2 \\ \mathbb{Z}_q \{i_1\} \end{vmatrix}$$

Theorem 3.

$$\begin{aligned} \mathcal{E}(X) &\cong & \mathcal{E}(M_1) \oplus [M_2, M_1] \oplus 0 \\ &\oplus [M_1, M_2] \oplus \mathcal{E}(M_2) \oplus [M_3, M_2] \\ &\oplus [M_1, M_3] \oplus [M_2, M_3] \oplus \mathcal{E}(M_3). \end{aligned}$$

Proof. For any $f \in [X, X]$, $f \in \mathcal{E}(X)$ if and only if $H_n(f)$, $H_{n+1}(f)$ and $H_{n+2}(f)$ are isomorphism if and only if $H_n(f_{11})$, $H_{n+1}(f_{22})$ and $H_{n+1}(f_{33})$ are isomorphism.

By Proposition 4, $N\mathcal{E}(M(\mathbb{Z}_q, \ell)) = N\mathcal{E}_*(M(\mathbb{Z}_q, \ell)) = \ell$, $f \in \mathcal{E}(X)$ if and only if $f_{11} \in \mathcal{E}(M_1)$, $f_{22} \in \mathcal{E}(M_2)$ and $f_{33} \in \mathcal{E}(M_3)$.

REMARK 3. By [7, Theorem 2.1], $\mathcal{E}(M(\mathbb{Z}_q, k)) \cong \mathbb{Z}_{(2,q)} \times \mathbb{Z}_q^*$ where \mathbb{Z}_q^* is the automorphism group of \mathbb{Z}_q for $k \geq 3$. By Proposition 1 and Theorem 3, let q be 2. Then

$$\begin{aligned}
\mathcal{E}(X) &\cong (\mathbb{Z}_2 \oplus \mathbb{Z}_2^*) \oplus \mathbb{Z}_2 \oplus 0 \\
&\oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_2) \oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_2^*) \oplus \mathbb{Z}_2 \\
&\oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{(q,24)}) \oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_2) \oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_2^*)
\end{aligned}$$

We define the subgroup $Z_{\sharp}^{k}[M_{j}, M_{k}] = \{f_{kj} \mid \pi_{\leq k}(f_{kj}) = 0\}$ of $[M_{j}, M_{k}]$. From now on, we determine $Z_{\sharp}^{k}[M_{j}, M_{k}]$ for $j, \ k = 1, 2, 3$ and $j \neq k$.

REMARK 4. By [6, Theorems 3.4 and 3.5], we have

	q is odd	$q \equiv 2 \pmod{4}$	$ q \equiv 0 \pmod{4}$
$Z^{n+2}_{\sharp}[M_2, M_1]$	\mathbb{Z}_q	0	0
$Z^{n+2}_{\sharp}[M_3, M_2]$	\mathbb{Z}_q	0	0
$Z^{n+2}_{\sharp}[M_1, M_2]$	0	\mathbb{Z}_2	$\mathbb{Z}_2\oplus\mathbb{Z}_2$
$Z^{n+2}_{\sharp}[M_2, M_3]$	0	0	0

It sufficiently determines that $Z^{n+2}_{\sharp}[M_3, M_1]$.

Lemma 2.

$$Z^{n+2}_{\sharp}[M_1, M_3] \begin{vmatrix} q \text{ is odd} \\ \mathbb{Z}_{(q,24)} \end{vmatrix} \begin{vmatrix} q \equiv 2 \pmod{4} \\ \mathbb{Z}_{(q,24)} \oplus \mathbb{Z}_2 \end{vmatrix} \begin{vmatrix} q \equiv 0 \pmod{4} \\ \mathbb{Z}_{(q,24)} \oplus \mathbb{Z}_2 \end{vmatrix}$$

Proof. Consider the mapping cone sequence of M_1 ,

$$S^{n+2} \xrightarrow{q} S^{n+2} \xrightarrow{i_1} M_1 \xrightarrow{\pi_1} S^{n+3} \xrightarrow{q} S^{n+3}.$$

This sequence induces the following exact sequence:

$$[S^{n+3}, M_3] \xrightarrow{q} [S^{n+3}, M_3] \xrightarrow{\pi_1^{\sharp}} [M_1, M_3] \xrightarrow{i_1^{\sharp}} [S^{n+2}, M_3] \xrightarrow{q} [S^{n+2}, M_3].$$

By Propositions 1 and 2, we have the split exact sequence

$$0 \longrightarrow [S^{n+3}, M_3] \xrightarrow{\pi_1^{\sharp}} [M_1, M_3] \xrightarrow{i_1^{\sharp}} ker(q) \longrightarrow 0.$$

Thus $[M_1, M_3] = \pi_1^{\sharp}([S^{n+3}, M_3]) \oplus (i_1^{\sharp})^{-1}(ker(q)).$ By Remark 2 and properties of split exact sequence, $\pi_1 \circ i_1 = C_*$ and $((i_1^{\sharp})^{-1}(ker(q)))(i_1) = i_1^{\sharp}((i_1^{\sharp})^{-1}(ker(q))) = ker(q)$ where C_* is the

constant map. We have $Z_{\sharp}^{n+2}[M_1, M_3] = \pi_1^{\sharp}([S^{n+3}, M_3])$. Since π_1^{\sharp} is monomorphism, $Z_{\sharp}^{n+2}[M_1, M_3] \cong [S^{n+3}, M_3]$.

Theorem 4.

	$\mathcal{E}^{dim}_{\sharp}(X)$
q: odd	$\mathbb{Z}_{q}\oplus(\mathbb{Z}_{(q,24)})\oplus\mathbb{Z}_{q}$
$q \equiv 2 \pmod{4}$	$\mathbb{Z}_2 \oplus (\mathbb{Z}_{(q,24)} \oplus \mathbb{Z}_2) \oplus \mathbb{Z}_2$
$q \equiv 0 \pmod{4}$	$\mid \mathbb{Z}_2 \oplus (\mathbb{Z}_{(q,24)} \oplus \mathbb{Z}_2) \oplus (\mathbb{Z}_2 \oplus \mathbb{Z}_2)$

Proof. For any $f \in \mathcal{E}^{dim}_{\sharp}(X)$, by Propositions 5 and 6, we have

$$\theta(\pi_{\leq dim}(f)) = \theta(id_{\pi_{\leq dim}(X)}) = \begin{pmatrix} id_{\pi_{\leq n+2}(M_1)} & 0 & 0\\ 0 & id_{\pi_{\leq n+2}(M_2)} & 0\\ 0 & 0 & id_{\pi_{\leq n+2}(M_3)} \end{pmatrix}$$

Thus $f_{11} \in \mathcal{E}^{n+2}_{\sharp}(M_1)$, $f_{22} \in \mathcal{E}^{n+2}_{\sharp}(M_2)$ and $f_{33} \in \mathcal{E}^{n+2}_{\sharp}(M_3)$. Furthermore, $\pi_{\leq dim}(f_{kj}) = 0$ for $k \neq j$. By Theorems 1 and 2, it is implies that

$$\mathcal{E}^{dim}_{\sharp}(X) \cong \mathcal{E}^{n+2}_{\sharp}(M_1) \oplus Z^{n+2}_{\sharp}[M_2, M_1] \oplus 0 \oplus Z^{n+2}_{\sharp}[M_1, M_2] \oplus 1 \oplus Z^{n+2}_{\sharp}[M_3, M_2] \oplus Z^{n+2}_{\sharp}[M_1, M_3] \oplus Z^{n+2}_{\sharp}[M_2, M_3] \oplus 1.$$

The proof is completed by Theorem 2, Remark 4 and Lemma 2. \Box

References

- S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories, Osaka Journal of Mathematics, 2 (1965), 71-115.
- [2] M. Arkowitz, The group of self-homotopy equivalences-a survey, Groups of Self-Equivalences and Related Topics: Proceedings of a Conference held in Montreal, Canada, Aug. 8–12, 1988, Springer. (2006), 170-203.
- [3] M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology and its Applications, 87(2) (1998), 133–154.
- [4] H. Choi and K. Lee, Certain self-homotopy equivalences on wedge products of Moore spaces, Pacific Journal of Mathematics, 272(1) (2014), 35-57.
- [5] H. Choi and K. Lee, Certain numbers on the groups of self-homotopy equivalences, Topology and its Applications, 181 (2015), 104-111.
- [6] M. Jeong, Certain subgroups of self-homotopy equivalences of the wedge of two Moore spaces, Communications of the Korean Mathematical Society, 25(1) (2010), 111-117.
- [7] J. Rutter, Spaces of homotopy self-equivalences-a survey, Springer. (2006).

Ho Won Choi Faculty of Liberal Arts and Teaching Kangnam University 40 Gangnam-ro, Yongin-si, 16979, Korea *E-mail*: howon@kangnam.ac.kr