SELF-MAPS ON $M\left(\mathbb{Z}_{q}, n+2\right) \vee M\left(\mathbb{Z}_{q}, n+1\right) \vee M\left(\mathbb{Z}_{q}, n\right)$

Ho Won Choi

Abstract

When G is an abelian group, we use the notation $M(G, n)$ to denote the Moore space. The space X is the wedge product space of Moore spaces, given by $X=M\left(\mathbb{Z}_{q}, n+2\right) \vee M\left(\mathbb{Z}_{q}, n+1\right) \vee$ $M\left(\mathbb{Z}_{q}, n\right)$. We determine the self-homotopy classes group $[X, X]$ and the self-homotopy equivalence group $\mathcal{E}(X)$. We investigate the subgroups of $\left[M_{j}, M_{k}\right]$ consisting of homotopy classes of maps that induce the trivial homomorphism up to $(n+2)$-homotopy groups for $j \neq k$. Using these results, we calculate the subgroup $\mathcal{E}_{\sharp}^{\operatorname{dim}}(X)$ of $\mathcal{E}(X)$ in which all elements induce the identity homomorphism up to $(n+2)$-homotopy groups of X.

1. Introduction

For a based, finite CW-complex X, we denote by $[X, X]$ the set of homotopy classes of self-maps on X and by $\mathcal{E}(X)$ the group of homotopy classes of self-homotopy equivalences of X. Furthermore, if X is either an H -space or co- H -space then $[X, X]$ has the group structure. For surveys of the known results and applications of $\mathcal{E}(X)$, see [2] and [7]. The subgroup $\mathcal{E}_{\sharp}^{d i m+r}(X)$ of $\mathcal{E}(X)$ consist of self-homotopy equivalences which induce the identity homomorphism on the homotopy groups of X in dimensions $\leq \operatorname{dim} X+r$. Many authors have studied $\mathcal{E}_{\sharp}^{\operatorname{dim}+r}(X)$ and so see [3], [4] and [6]. When G is an abelian group, we let $M(G, n)$ denote the Moore space. The space X is the wedge product space of Moore-spaces such that $X=M\left(\mathbb{Z}_{q}, n+2\right) \vee M\left(\mathbb{Z}_{q}, n+1\right) \vee M\left(\mathbb{Z}_{q}, n\right)$. In this paper, we study $[X, X], \mathcal{E}(X)$ and $\mathcal{E}_{\sharp}^{\operatorname{dim}}(X)$. We determine $[X, X]$ and $\mathcal{E}(X)$. By Lemma 1, we have

$$
[X, X] \equiv \oplus_{j, k=1,2,3}\left[M_{j}, M_{k}\right]
$$

[^0]By Theorem 3, $\mathcal{E}(X)$ is the isomorphic to

$$
\begin{aligned}
& \mathcal{E}\left(M_{1}\right) \oplus\left[M_{2}, M_{1}\right] \oplus\left[M_{3}, M_{1}\right] \\
& \oplus\left[M_{1}, M_{2}\right] \oplus \mathcal{E}\left(M_{2}\right) \oplus\left[M_{3}, M_{2}\right] \\
& \oplus 0 \oplus\left[M_{2}, M_{3}\right] \oplus \mathcal{E}\left(M_{3}\right) .
\end{aligned}
$$

Depending on $q,[X, X]$ and $\mathcal{E}(X)$ may appear differently. By Remark 1 and 3 , we calculate special cases. Now, we calculate $\mathcal{E}_{\sharp}^{\text {dim }}(X)$. First of all, we investigate the subgroups $Z_{\sharp}^{n+2}\left[M_{j}, M_{k}\right]$ of $\left[M_{j}, M_{k}\right]$ consisting of homotopy classes of maps that induce the trivial homomorphism up to $(n+2)$-homotopy groups for $j \neq k$. By Remark 4 and Lemma 2 , we have

$$
\begin{array}{c|c|c|c}
& q \text { is odd } & q \equiv 2(\bmod 4) & q \equiv 0(\bmod 4) \\
Z_{\sharp}^{n+2}\left[M_{2}, M_{1}\right] & \mathbb{Z}_{q} & 0 & 0 \\
Z_{\sharp}^{n+2}\left[M_{3}, M_{2}\right] & \mathbb{Z}_{q} & 0 & 0 \\
Z_{\sharp}^{n+2}\left[M_{1}, M_{2}\right] & 0 & \mathbb{Z}_{2} & \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\
Z_{\sharp}^{n+2}\left[M_{2}, M_{3}\right] & 0 & 0 & 0 \\
Z_{\sharp}^{n+2}\left[M_{1}, M_{3}\right] & \mathbb{Z}_{(q, 24)} & \mathbb{Z}_{(q, 24)} \oplus \mathbb{Z}_{2} & \mathbb{Z}_{(q, 24)} \oplus \mathbb{Z}_{2}
\end{array}
$$

Using this result, we have determined $\mathcal{E}_{\sharp}^{d i m}(X)$. By Theorem 4, we see that

	$\mathcal{E}_{\sharp}^{\text {dim }}(X)$
$q: \operatorname{odd}$	$\mathbb{Z}_{q} \oplus\left(\mathbb{Z}_{(q, 24)}\right) \oplus \mathbb{Z}_{q}$
$q \equiv 2(\bmod 4)$	$\mathbb{Z}_{2} \oplus\left(\mathbb{Z}_{(q, 24)} \oplus \mathbb{Z}_{2}\right) \oplus \mathbb{Z}_{2}$
$q \equiv 0(\bmod 4)$	$\mathbb{Z}_{2} \oplus\left(\mathbb{Z}_{(q, 24)} \oplus \mathbb{Z}_{2}\right) \oplus\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right)$

2. Preliminaries

In this section, we present some propositions to use.
Proposition 1 ([1]).
(1) $\pi_{n}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \cong \mathbb{Z}_{q}$ for all q.
(2) $\pi_{n+1}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \cong\left\{\begin{array}{cc}0 & \text { if } q \text { is odd, } \\ \mathbb{Z}_{2} & \text { if } q \text { is even. }\end{array}\right.$
(3) $\pi_{n+2}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \cong\left\{\begin{array}{cc}0 & \text { if } q \text { is odd, } \\ \mathbb{Z}_{4} & \text { if } q \equiv 2(\bmod 4), \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { if } q \equiv 0(\bmod 4) .\end{array}\right.$
(4) $\pi_{n+3}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \cong\left\{\begin{array}{cc}\mathbb{Z}_{(q, 24)} & \text { if } q \text { is odd }, \\ \mathbb{Z}_{(q, 24)} \oplus \mathbb{Z}_{2} & \text { if } q \equiv 2(\bmod 4), \\ \mathbb{Z}_{(q, 24)} \oplus \mathbb{Z}_{2} & \text { if } q \equiv 0(\bmod 4) .\end{array}\right.$

Proposition 2 ([1]).
(1) $\left[M\left(\mathbb{Z}_{q}, n-1\right), M\left(\mathbb{Z}_{q}, n\right)\right] \cong \mathbb{Z}_{q}$ for all q.
$(2)\left[M\left(\mathbb{Z}_{q}, n\right), M\left(\mathbb{Z}_{q}, n\right)\right] \cong\left\{\begin{array}{cc}\mathbb{Z}_{q} & \text { if } q \text { is odd }, \\ \mathbb{Z}_{2 q} & \text { if } q \equiv 2(\bmod 4), \\ \mathbb{Z}_{q} \oplus \mathbb{Z}_{2} & \text { if } q \equiv 0(\bmod 4) .\end{array}\right.$
$(3)\left[M\left(\mathbb{Z}_{q}, n+1\right), M\left(\mathbb{Z}_{q}, n\right)\right] \cong\left\{\begin{array}{cc}0 & \text { if } q \text { is odd, } \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { if } q \equiv 2(\bmod 4), \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { if } q \equiv 0(\bmod 4) .\end{array}\right.$
(4) $\left[M\left(\mathbb{Z}_{q}, n+2\right), M\left(\mathbb{Z}_{q}, n\right)\right] \cong\left\{\begin{array}{cc}\mathbb{Z}_{(q, 24)} & \text { if } q \text { is odd, } \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{(q, 24)} & \text { if } q \equiv 2(\bmod 4), \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{(q, 24)} & \text { if } q \equiv 0(\bmod 4) .\end{array}\right.$

Proposition 3 ([3]). If X is $(k-1)$-connected, Y is $(\ell-1)$-connected and, further, if $k, \ell \geq 2$ and $\operatorname{dim} P<k+\ell-1$, then the projections $X \vee Y \rightarrow X$ and $X \vee Y \rightarrow Y$ induce a bijection :

$$
[P, X \vee Y] \rightarrow[P, X] \oplus[P, Y]
$$

Theorem 1 ([3]). Let $M(G, n)$ be a Moore space. Then

$$
\mathcal{E}_{*}^{\infty}(M(G, n)) \cong \oplus^{(r+s) s} \mathbb{Z}_{2}
$$

where r is the rank of G and s is the number of 2-torsion sums of G.
Theorem $2([3])$. Let $M(G, n)$ be a Moore space. Then

$$
\begin{aligned}
\mathcal{E}_{\sharp}^{n}(M(G, n)) & \cong \mathcal{E}_{*}^{\infty}(M(G, n)) \\
\mathcal{E}_{\sharp}^{n+1}(M(G, n)) & \cong 1, \text { if } n>3 .
\end{aligned}
$$

For any non-negative integer $n, \mathcal{A}_{\sharp}^{n}(X)$ consists of homotopy classes of self-map of X that induce an automorphism from $\pi_{i}(X)$ to $\pi_{i}(X)$ for $i=0,1, \cdots, n . \mathcal{A}_{\sharp}^{k}(X)$ is a submonoid of $[X, X]$ and always contains $\mathcal{E}(X)$. If $n=\infty$, we briefly denote $\mathcal{A}_{\sharp}^{\infty}(X)$ as $\mathcal{A}_{\sharp}(X)$. If $k<n$, then $\mathcal{A}_{\sharp}^{n}(X) \subseteq \mathcal{A}_{\sharp}^{k}(X)$; thus, we have the following chain by inclusion:

$$
\stackrel{\mathcal{E}}{ }(X) \subseteq \mathcal{A}_{\sharp}(X) \subseteq \ldots \subseteq \mathcal{A}_{\sharp}^{1}(X) \subseteq \mathcal{A}_{\sharp}^{0}(X)=[X, X]
$$

Definition 1 ([5]). The self-closeness number of X is the minimum number n such that $\mathcal{A}_{\sharp}^{n}(X)=\mathcal{E}(X)$, and is denoted by $N \mathcal{E}(X)$. If the minimum number n does not exist such that $\mathcal{A}_{\sharp}^{n}(X)=\mathcal{E}(X)$, then we write $N \mathcal{E}(X)=\infty$.

Proposition 4 ([5]). $N \mathcal{E}(M(G, n))=n$ for $n \geq 3$.
Let f be a map from X to Y.

- $\pi_{k}(f): \pi_{k}(X) \rightarrow \pi_{k}(Y)$ is a homomorphism from k-dimensional homotopy group of X to k-dimensional homotopy group of Y.
- $\pi_{\leq k}(f): \pi_{\leq k}(X) \rightarrow \pi_{\leq k}(Y)$ are homomorphisms up to k-dimensional homotopy group.
- $H_{k}(f): H_{k}(X) \rightarrow H_{k}(Y)$ is a homomorphism from k-dimensional homology group of X to k-dimensional homology group of Y.
- $f^{\sharp}:[Y, Z] \rightarrow[X, Z]$ for any Z.

3. Self-maps on $M\left(\mathbb{Z}_{q}, n+2\right) \vee M\left(\mathbb{Z}_{q}, n+1\right) \vee M\left(\mathbb{Z}_{q}, n\right)$

For $n \geq 5$, we let $X=M\left(\mathbb{Z}_{q}, n+2\right) \vee M\left(\mathbb{Z}_{q}, n+1\right) \vee M\left(\mathbb{Z}_{q}, n\right)$. We determine the groups $[X, X], \mathcal{E}(X)$ and $\mathcal{E}_{\sharp}^{\text {dim }}(X)$.
From now on, we set $M_{1}=M\left(\mathbb{Z}_{q}, n+2\right), \quad M_{2}=M\left(\mathbb{Z}_{q}, n+1\right), M_{3}=$ $M\left(\mathbb{Z}_{q}, n\right)$ and $X=M_{1} \vee M_{2} \vee M_{3}$.

Lemma 1. $[X, X] \equiv \oplus_{j, k=1,2,3}\left[M_{j}, M_{k}\right]$.
Proof. By Proposition 3, we have $[X, X] \equiv \oplus_{j, k=1,2,3}\left[M_{j}, M_{k}\right]$.
Now, we introduce a notation

$$
\begin{aligned}
{[X, X] \equiv } & {\left[M_{1}, M_{1}\right] \oplus\left[M_{2}, M_{1}\right] \oplus\left[M_{3}, M_{1}\right] } \\
& \oplus\left[M_{1}, M_{2}\right] \oplus\left[M_{2}, M_{2}\right] \oplus\left[M_{3}, M_{2}\right] \\
& \oplus\left[M_{1}, M_{3}\right] \oplus\left[M_{2}, M_{3}\right] \oplus\left[M_{3}, M_{3}\right] .
\end{aligned}
$$

Since $\left[M_{3}, M_{1}\right]=0$,

$$
\begin{aligned}
{[X, X] \equiv } & {\left[M_{1}, M_{1}\right] \oplus\left[M_{2}, M_{1}\right] \oplus 0 } \\
& \oplus\left[M_{1}, M_{2}\right] \oplus\left[M_{2}, M_{2}\right] \oplus\left[M_{3}, M_{2}\right] \\
& \oplus\left[M_{1}, M_{3}\right] \oplus\left[M_{2}, M_{3}\right] \oplus\left[M_{3}, M_{3}\right]
\end{aligned}
$$

Remark 1. Let q be an odd. By Proposition 2, we have

$$
\begin{aligned}
{[X, X] \equiv } & \mathbb{Z}_{q} \oplus \mathbb{Z}_{q} \oplus 0 \\
& \oplus 0 \oplus \mathbb{Z}_{q} \oplus \mathbb{Z}_{q} \\
& \oplus \mathbb{Z}_{(q, 24)} \oplus 0 \oplus \mathbb{Z}_{q} .
\end{aligned}
$$

Let $j, k \in\{1,2,3\}$ and $f \in[X, X]$.

- $i_{j}: M_{j} \rightarrow X$ is the inclusion.
- $p_{k}: X \rightarrow M_{k}$ is the projection.
- $f_{k j}: J \rightarrow K$ where $f_{k j}=p_{k} \circ f \circ i_{j}$.

Proposition 5. The function θ which assigns to each $f \in[X, X]$, the 3×3 matrix

$$
\theta(f)=\left(\begin{array}{ccc}
f_{11} & f_{12} & 0 \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right)
$$

where $f_{k j} \in\left[M_{j}, M_{k}\right]$ is bijective. In addition,
(1) $\theta(f+g)=\theta(f)+\theta(g)$, so θ is an isomorphism $[X, X] \rightarrow \oplus_{j, k=1,2,3}\left[M_{j}, M_{k}\right]$.
(2) $\theta(f \circ g)=\theta(f) \theta(g)$ where $f \circ g$ denotes composition in $[X, X]$ and $\theta(f) \theta(g)$ denotes matrix multiplication.
(3) If $\alpha_{k}: \pi_{k}\left(M_{1}\right) \oplus \pi_{k}\left(M_{2}\right) \oplus \pi_{k}\left(M_{3}\right) \rightarrow \pi_{k}\left(M_{1} \vee M_{2} \vee M_{3}\right)$ and $\beta_{k}: \pi_{k}\left(M_{1} \vee M_{2} \vee M_{3}\right) \rightarrow \pi_{k}\left(M_{1}\right) \oplus \pi_{k}\left(M_{2}\right) \oplus \pi_{k}\left(M_{3}\right)$ are the homomorphism induced by the inclusions and projections, respectively. then β_{k} 。 $\pi_{k}(f) \circ \alpha_{k}(x, y, z)=\left(\pi_{k}\left(f_{11}\right)(x)+\pi_{k}\left(f_{12}\right)(y)+\pi_{k}\left(f_{13}\right)(z), \pi_{k}\left(f_{21}\right)(x)+\right.$ $\left.\pi_{k}\left(f_{22}\right)(y)+\pi_{k}\left(f_{23}\right)(z), \pi_{k}\left(f_{31}\right)(x)+\pi_{k}\left(f_{32}\right)(y)+\pi_{k}\left(f_{33}\right)(z)\right)$ for $x \in$ $\pi_{k}\left(M_{1}\right), y \in \pi_{k}\left(M_{2}\right)$ and $z \in \pi_{k}\left(M_{3}\right)$.

Proof. By Lemma 1, $[X, X] \equiv \oplus_{j, k=1,2,3}\left[M_{j}, M_{k}\right]$. The rest of proofs are straightforward and hence omitted.

By Proposition 3, we have the following proposition.
Proposition 6. $\pi_{k}(X) \cong \pi_{k}\left(M_{1}\right) \oplus \pi_{k}\left(M_{2}\right) \oplus \pi_{k}\left(M_{3}\right)$ for $k \leq 2 n$.
Remark 2. By [4, Remark 3.1], there is the following table.

$$
\pi_{k}\left(M_{1}\right)\left|\begin{array}{c|c}
k<n+2 \\
0 & k=n+2 \\
\mathbb{Z}_{q}\left\{i_{1}\right\}
\end{array}\right|
$$

Theorem 3.

$$
\begin{aligned}
\mathcal{E}(X) \cong & \mathcal{E}\left(M_{1}\right) \oplus\left[M_{2}, M_{1}\right] \oplus 0 \\
& \oplus\left[M_{1}, M_{2}\right] \oplus \mathcal{E}\left(M_{2}\right) \oplus\left[M_{3}, M_{2}\right] \\
& \oplus\left[M_{1}, M_{3}\right] \oplus\left[M_{2}, M_{3}\right] \oplus \mathcal{E}\left(M_{3}\right) .
\end{aligned}
$$

Proof. For any $f \in[X, X], f \in \mathcal{E}(X)$ if and only if $H_{n}(f), H_{n+1}(f)$ and $H_{n+2}(f)$ are isomorphism if and only if $H_{n}\left(f_{11}\right), H_{n+1}\left(f_{22}\right)$ and $H_{n+1}\left(f_{33}\right)$ are isomorphism.
By Proposition $4, N \mathcal{E}\left(M\left(\mathbb{Z}_{q}, \ell\right)\right)=N \mathcal{E}_{*}\left(M\left(\mathbb{Z}_{q}, \ell\right)\right)=\ell, f \in \mathcal{E}(X)$ if and only if $f_{11} \in \mathcal{E}\left(M_{1}\right), f_{22} \in \mathcal{E}\left(M_{2}\right)$ and $f_{33} \in \mathcal{E}\left(M_{3}\right)$.

REmark 3. By [7, Theorem 2.1], $\mathcal{E}\left(M\left(\mathbb{Z}_{q}, k\right)\right) \cong \mathbb{Z}_{(2, q)} \times \mathbb{Z}_{q}^{*}$ where \mathbb{Z}_{q}^{*} is the automorphism group of \mathbb{Z}_{q} for $k \geq 3$. By Proposition 1 and Theorem 3, let q be 2. Then

$$
\begin{aligned}
\mathcal{E}(X) \cong & \left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}^{*}\right) \oplus \mathbb{Z}_{2} \oplus 0 \\
& \oplus\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right) \oplus\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}^{*}\right) \oplus \mathbb{Z}_{2} \\
& \oplus\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{(q, 24)}\right) \oplus\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right) \oplus\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}^{*}\right)
\end{aligned}
$$

We define the subgroup $Z_{\sharp}^{k}\left[M_{j}, M_{k}\right]=\left\{f_{k j} \mid \pi_{\leq k}\left(f_{k j}\right)=0\right\}$ of $\left[M_{j}, M_{k}\right]$. From now on, we determine $Z_{\sharp}^{k}\left[M_{j}, M_{k}\right]$ for $j, k=1,2,3$ and $j \neq k$.

Remark 4. By [6, Theorems 3.4 and 3.5], we have

$$
\begin{array}{c|c|c|c}
& q \text { is odd } & q \equiv 2(\bmod 4) & q \equiv 0(\bmod 4) \\
Z_{\sharp}^{n+2}\left[M_{2}, M_{1}\right] & \mathbb{Z}_{q} & 0 & 0 \\
Z_{\sharp}^{n+2}\left[M_{3}, M_{2}\right] & \mathbb{Z}_{q} & 0 & 0 \\
Z_{\sharp}^{n+2}\left[M_{1}, M_{2}\right] & 0 & \mathbb{Z}_{2} & \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \\
Z_{\sharp}^{n+2}\left[M_{2}, M_{3}\right] & 0 & 0 & 0
\end{array}
$$

It sufficiently determines that $Z_{\sharp}^{n+2}\left[M_{3}, M_{1}\right]$.

LEMMA 2.

$$
\begin{array}{l|c|c|c}
& q \text { is odd } & q \equiv 2(\bmod 4) & q \equiv 0(\bmod 4) \\
Z_{\sharp}^{n+2}\left[M_{1}, M_{3}\right] & \mathbb{Z}_{(q, 24)} & \mathbb{Z}_{(q, 24)} \oplus \mathbb{Z}_{2} & \mathbb{Z}_{(q, 24)} \oplus \mathbb{Z}_{2}
\end{array}
$$

Proof. Consider the mapping cone sequence of M_{1},

$$
S^{n+2} \xrightarrow{q} S^{n+2} \xrightarrow{i_{1}} M_{1} \xrightarrow{\pi_{1}} S^{n+3} \xrightarrow{q} S^{n+3} .
$$

This sequence induces the following exact sequence:

$$
\left[S^{n+3}, M_{3}\right] \xrightarrow{q}\left[S^{n+3}, M_{3}\right] \xrightarrow{\pi_{1}^{\sharp}}\left[M_{1}, M_{3}\right] \xrightarrow{i_{1}^{\sharp}}\left[S^{n+2}, M_{3}\right] \xrightarrow{q}\left[S^{n+2}, M_{3}\right] .
$$

By Propositions 1 and 2, we have the split exact sequence

$$
0 \longrightarrow\left[S^{n+3}, M_{3}\right] \xrightarrow{\pi_{1}^{\sharp}}\left[M_{1}, M_{3}\right] \xrightarrow{i_{1}^{\sharp}} \operatorname{ker}(q) \longrightarrow 0 .
$$

Thus $\left[M_{1}, M_{3}\right]=\pi_{1}^{\sharp}\left(\left[S^{n+3}, M_{3}\right]\right) \oplus\left(i_{1}^{\sharp}\right)^{-1}(\operatorname{ker}(q))$.
By Remark 2 and properties of split exact sequence, $\pi_{1} \circ i_{1}=C_{*}$ and $\left(\left(i_{1}^{\sharp}\right)^{-1}(\operatorname{ker}(q))\right)\left(i_{1}\right)=i_{1}^{\sharp}\left(\left(i_{1}^{\sharp}\right)^{-1}(\operatorname{ker}(q))\right)=\operatorname{ker}(q)$ where C_{*} is the
constant map. We have $Z_{\sharp}^{n+2}\left[M_{1}, M_{3}\right]=\pi_{1}^{\sharp}\left(\left[S^{n+3}, M_{3}\right]\right)$. Since π_{1}^{\sharp} is monomorphism, $Z_{\sharp}^{n+2}\left[M_{1}, M_{3}\right] \cong\left[S^{n+3}, M_{3}\right]$.

Theorem 4.

	$\mathcal{E}_{\sharp}^{\text {dim }}(X)$
q : odd	$\mathbb{Z}_{q} \oplus\left(\mathbb{Z}_{(q, 24)}\right) \oplus \mathbb{Z}_{q}$
$q \equiv 2(\bmod 4)$	$\mathbb{Z}_{2} \oplus\left(\mathbb{Z}_{(q, 24)} \oplus \mathbb{Z}_{2}\right) \oplus \mathbb{Z}_{2}$
$q \equiv 0(\bmod 4)$	$\mathbb{Z}_{2} \oplus\left(\mathbb{Z}_{(q, 24)} \oplus \mathbb{Z}_{2}\right) \oplus\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right)$

Proof. For any $f \in \mathcal{E}_{\sharp}^{d i m}(X)$, by Propositions 5 and 6 , we have
$\theta\left(\pi_{\leq \operatorname{dim}}(f)\right)=\theta\left(i d_{\pi_{\leq \operatorname{dim}}(X)}\right)=\left(\begin{array}{ccc}i d_{\pi_{\leq n+2}\left(M_{1}\right)} & 0 & 0 \\ 0 & i d_{\pi_{\leq n+2}\left(M_{2}\right)} & 0 \\ 0 & 0 & i d_{\pi_{\leq n+2}\left(M_{3}\right)}\end{array}\right)$.
Thus $f_{11} \in \mathcal{E}_{\sharp}^{n+2}\left(M_{1}\right), f_{22} \in \mathcal{E}_{\sharp}^{n+2}\left(M_{2}\right)$ and $f_{33} \in \mathcal{E}_{\sharp}^{n+2}\left(M_{3}\right)$. Furthermore, $\pi_{\leq \operatorname{dim}}\left(f_{k j}\right)=0$ for $k \neq j$. By Theorems 1 and 2 , it is implies that

$$
\begin{aligned}
\mathcal{E}_{\sharp}^{\operatorname{dim}}(X) \cong & \mathcal{E}_{\sharp}^{n+2}\left(M_{1}\right) \oplus Z_{\sharp}^{n+2}\left[M_{2}, M_{1}\right] \oplus 0 \\
& \oplus Z_{\sharp}^{n+2}\left[M_{1}, M_{2}\right] \oplus 1 \oplus Z_{\sharp}^{n+2}\left[M_{3}, M_{2}\right] \\
& \oplus Z_{\sharp}^{n+2}\left[M_{1}, M_{3}\right] \oplus Z_{\sharp}^{n+2}\left[M_{2}, M_{3}\right] \oplus 1 .
\end{aligned}
$$

The proof is completed by Theorem 2, Remark 4 and Lemma 2.

References

[1] S. Araki and H. Toda, Multiplicative structures in mod q cohomology theories, Osaka Journal of Mathematics, 2 (1965), 71-115.
[2] M. Arkowitz, The group of self-homotopy equivalences-a survey, Groups of SelfEquivalences and Related Topics: Proceedings of a Conference held in Montreal, Canada, Aug. 8-12, 1988, Springer. (2006), 170-203.
[3] M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology and its Applications, 87(2) (1998), 133-154.
[4] H. Choi and K. Lee, Certain self-homotopy equivalences on wedge products of Moore spaces, Pacific Journal of Mathematics, 272(1) (2014), 35-57.
[5] H. Choi and K. Lee, Certain numbers on the groups of self-homotopy equivalences, Topology and its Applications, 181 (2015), 104-111.
[6] M. Jeong, Certain subgroups of self-homotopy equivalences of the wedge of two Moore spaces, Communications of the Korean Mathematical Society, 25(1) (2010), 111-117.
[7] J. Rutter, Spaces of homotopy self-equivalences-a survey, Springer. (2006).

Ho Won Choi
Faculty of Liberal Arts and Teaching
Kangnam University
40 Gangnam-ro, Yongin-si, 16979, Korea
E-mail: howon@kangnam.ac.kr

[^0]: Received August 17, 2023; Accepted November 14, 2023.
 2020 Mathematics Subject Classification: Primary 55P10, Secondary 55Q05, 55Q20.

 Key words and phrases: Self-homotopy equivalence, Moore space, Self-closeness number.

