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SELF-MAPS ON M(Zq, n+ 2) ∨M(Zq, n+ 1) ∨M(Zq, n)

Ho Won Choi

Abstract. WhenG is an abelian group, we use the notationM(G,n)
to denote the Moore space. The space X is the wedge product
space of Moore spaces, given by X = M(Zq, n+2)∨M(Zq, n+1)∨
M(Zq, n). We determine the self-homotopy classes group [X,X]
and the self-homotopy equivalence group E(X). We investigate the
subgroups of [Mj ,Mk] consisting of homotopy classes of maps that
induce the trivial homomorphism up to (n + 2)-homotopy groups
for j ̸= k. Using these results, we calculate the subgroup Edim

♯ (X)
of E(X) in which all elements induce the identity homomorphism
up to (n+ 2)-homotopy groups of X.

1. Introduction

For a based, finite CW-complex X, we denote by [X,X] the set of
homotopy classes of self-maps on X and by E(X) the group of homotopy
classes of self-homotopy equivalences of X. Furthermore, if X is either
an H-space or co-H-space then [X,X] has the group structure. For
surveys of the known results and applications of E(X), see [2] and [7].

The subgroup Edim+r
♯ (X) of E(X) consist of self-homotopy equivalences

which induce the identity homomorphism on the homotopy groups of
X in dimensions ≤ dim X + r. Many authors have studied Edim+r

♯ (X)

and so see [3], [4] and [6]. When G is an abelian group, we let M(G,n)
denote the Moore space. The space X is the wedge product space of
Moore-spaces such that X = M(Zq, n+2)∨M(Zq, n+1)∨M(Zq, n). In

this paper, we study [X,X], E(X) and Edim
♯ (X). We determine [X,X]

and E(X). By Lemma 1, we have

[X,X] ≡ ⊕j,k=1,2,3[Mj ,Mk].
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By Theorem 3, E(X) is the isomorphic to

E(M1)⊕ [M2,M1]⊕ [M3,M1]

⊕[M1,M2]⊕ E(M2)⊕ [M3,M2]

⊕ 0 ⊕ [M2,M3]⊕ E(M3).

Depending on q, [X,X] and E(X) may appear differently. By Remark 1
and 3, we calculate special cases. Now, we calculate Edim

♯ (X). First of

all, we investigate the subgroups Zn+2
♯ [Mj ,Mk] of [Mj ,Mk] consisting

of homotopy classes of maps that induce the trivial homomorphism up
to (n+ 2)-homotopy groups for j ̸= k. By Remark 4 and Lemma 2, we
have

q is odd q ≡ 2 (mod 4) q ≡ 0 (mod 4)
Zn+2
♯ [M2,M1] Zq 0 0

Zn+2
♯ [M3,M2] Zq 0 0

Zn+2
♯ [M1,M2] 0 Z2 Z2 ⊕ Z2

Zn+2
♯ [M2,M3] 0 0 0

Zn+2
♯ [M1,M3] Z(q,24) Z(q,24) ⊕ Z2 Z(q,24) ⊕ Z2

Using this result, we have determined Edim
♯ (X). By Theorem 4, we

see that

Edim
♯ (X)

q : odd Zq ⊕ (Z(q,24))⊕ Zq

q ≡ 2 (mod 4) Z2 ⊕ (Z(q,24) ⊕ Z2)⊕ Z2

q ≡ 0 (mod 4) Z2 ⊕ (Z(q,24) ⊕ Z2)⊕ (Z2 ⊕ Z2)

2. Preliminaries

In this section, we present some propositions to use.

Proposition 1 ([1]).
(1) πn(M(Zq, n)) ∼= Zq for all q.

(2) πn+1(M(Zq, n)) ∼=
{

0 if q is odd,
Z2 if q is even.

(3) πn+2(M(Zq, n)) ∼=

 0 if q is odd,
Z4 if q ≡ 2 (mod 4),

Z2 ⊕ Z2 if q ≡ 0 (mod 4).
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(4) πn+3(M(Zq, n)) ∼=


Z(q,24) if q is odd,

Z(q,24) ⊕ Z2 if q ≡ 2 (mod 4),
Z(q,24) ⊕ Z2 if q ≡ 0 (mod 4).

Proposition 2 ([1]).
(1) [M(Zq, n− 1),M(Zq, n)] ∼= Zq for all q.

(2) [M(Zq, n),M(Zq, n)] ∼=

 Zq if q is odd,
Z2q if q ≡ 2 (mod 4),

Zq ⊕ Z2 if q ≡ 0 (mod 4).

(3) [M(Zq, n+ 1),M(Zq, n)] ∼=

 0 if q is odd,
Z2 ⊕ Z2 if q ≡ 2 (mod 4),

Z2 ⊕ Z2 ⊕ Z2 if q ≡ 0 (mod 4).

(4) [M(Zq, n+2),M(Zq, n)] ∼=


Z(q,24) if q is odd,

Z2 ⊕ Z2 ⊕ Z(q,24) if q ≡ 2 (mod 4),
Z2 ⊕ Z2 ⊕ Z2 ⊕ Z(q,24) if q ≡ 0 (mod 4).

Proposition 3 ([3]). If X is (k−1)-connected, Y is (ℓ−1)-connected
and, further, if k, ℓ ≥ 2 and dimP < k + ℓ − 1, then the projections
X ∨ Y → X and X ∨ Y → Y induce a bijection :

[P,X ∨ Y ] → [P,X]⊕ [P, Y ].

Theorem 1 ([3]). Let M(G,n) be a Moore space. Then

E∞
∗ (M(G,n)) ∼= ⊕(r+s)sZ2

where r is the rank of G and s is the number of 2-torsion sums of G.

Theorem 2 ([3]). Let M(G,n) be a Moore space. Then

En
♯ (M(G,n)) ∼= E∞

∗ (M(G,n))

En+1
♯ (M(G,n)) ∼= 1, if n > 3.

For any non-negative integer n, An
♯ (X) consists of homotopy classes

of self-map of X that induce an automorphism from πi(X) to πi(X) for
i = 0, 1, · · ·, n. Ak

♯ (X) is a submonoid of [X,X] and always contains

E(X). If n = ∞, we briefly denote A∞
♯ (X) as A♯(X). If k < n, then

An
♯ (X) ⊆ Ak

♯ (X); thus, we have the following chain by inclusion:

E(X) ⊆ A♯(X) ⊆ ... ⊆ A1
♯ (X) ⊆ A0

♯ (X) = [X,X].

Definition 1 ([5]). The self-closeness number of X is the minimum
number n such that An

♯ (X) = E(X), and is denoted by NE(X). If the

minimum number n does not exist such that An
♯ (X) = E(X), then we

write NE(X) = ∞.
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Proposition 4 ([5]). NE(M(G,n)) = n for n ≥ 3.

Let f be a map from X to Y .

• πk(f) : πk(X) → πk(Y ) is a homomorphism from k-dimensional
homotopy group of X to k-dimensional homotopy group of Y .

• π≤k(f) : π≤k(X) → π≤k(Y ) are homomorphisms up to k-dimensional
homotopy group.

• Hk(f) : Hk(X) → Hk(Y ) is a homomorphism from k-dimensional
homology group of X to k-dimensional homology group of Y .

• f ♯ : [Y, Z] → [X,Z] for any Z.

3. Self-maps on M(Zq, n+ 2) ∨M(Zq, n+ 1) ∨M(Zq, n)

For n ≥ 5, we let X = M(Zq, n+ 2) ∨M(Zq, n+ 1) ∨M(Zq, n). We

determine the groups [X,X], E(X) and Edim
♯ (X).

From now on, we set M1 = M(Zq, n + 2), M2 = M(Zq, n + 1), M3 =
M(Zq, n) and X = M1 ∨M2 ∨M3.

Lemma 1. [X,X] ≡ ⊕j,k=1,2,3[Mj ,Mk].

Proof. By Proposition 3, we have [X,X] ≡ ⊕j,k=1,2,3[Mj ,Mk].

Now, we introduce a notation

[X,X] ≡ [M1,M1]⊕ [M2,M1]⊕ [M3,M1]

⊕[M1,M2]⊕ [M2,M2]⊕ [M3,M2]

⊕[M1,M3]⊕ [M2,M3]⊕ [M3,M3].

Since [M3,M1] = 0,

[X,X] ≡ [M1,M1]⊕ [M2,M1]⊕ 0

⊕[M1,M2]⊕ [M2,M2]⊕ [M3,M2]

⊕[M1,M3]⊕ [M2,M3]⊕ [M3,M3].

Remark 1. Let q be an odd. By Proposition 2, we have

[X,X] ≡ Zq ⊕ Zq ⊕ 0

⊕0⊕ Zq ⊕ Zq

⊕Z(q,24) ⊕ 0⊕ Zq.
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Let j, k ∈ {1, 2, 3} and f ∈ [X,X].

• ij : Mj → X is the inclusion.
• pk : X → Mk is the projection.
• fkj : J → K where fkj = pk ◦ f ◦ ij .
Proposition 5. The function θ which assigns to each f ∈ [X,X],

the 3× 3 matrix

θ(f) =

f11 f12 0
f21 f22 f23
f31 f32 f33

 ,

where fkj ∈ [Mj ,Mk] is bijective. In addition,
(1) θ(f+g) = θ(f)+θ(g), so θ is an isomorphism [X,X] → ⊕j,k=1,2,3[Mj ,Mk].
(2) θ(f ◦ g) = θ(f)θ(g) where f ◦ g denotes composition in [X,X] and
θ(f)θ(g) denotes matrix multiplication.
(3) If αk : πk(M1) ⊕ πk(M2) ⊕ πk(M3) → πk(M1 ∨ M2 ∨ M3) and
βk : πk(M1∨M2∨M3) → πk(M1)⊕πk(M2)⊕πk(M3) are the homomor-
phism induced by the inclusions and projections, respectively. then βk ◦
πk(f) ◦αk(x, y, z) = (πk(f11)(x) + πk(f12)(y) + πk(f13)(z), πk(f21)(x) +
πk(f22)(y) + πk(f23)(z), πk(f31)(x) + πk(f32)(y) + πk(f33)(z)) for x ∈
πk(M1), y ∈ πk(M2) and z ∈ πk(M3).

Proof. By Lemma 1, [X,X] ≡ ⊕j,k=1,2,3[Mj ,Mk]. The rest of proofs
are straightforward and hence omitted.

By Proposition 3, we have the following proposition.

Proposition 6. πk(X) ∼= πk(M1)⊕ πk(M2)⊕ πk(M3) for k ≤ 2n.

Remark 2. By [4, Remark 3.1], there is the following table.

k < n+ 2 k = n+ 2
πk(M1) 0 Zq {i1}

Theorem 3.

E(X) ∼= E(M1)⊕ [M2,M1]⊕ 0

⊕[M1,M2]⊕ E(M2)⊕ [M3,M2]

⊕[M1,M3]⊕ [M2,M3]⊕ E(M3).

Proof. For any f ∈ [X,X], f ∈ E(X) if and only if Hn(f), Hn+1(f)
and Hn+2(f) are isomorphism if and only if Hn(f11), Hn+1(f22) and
Hn+1(f33) are isomorphism.
By Proposition 4, NE(M(Zq, ℓ)) = NE∗(M(Zq, ℓ)) = ℓ, f ∈ E(X) if and
only if f11 ∈ E(M1), f22 ∈ E(M2) and f33 ∈ E(M3).
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Remark 3. By [7, Theorem 2.1], E(M(Zq, k)) ∼= Z(2,q) × Z∗
q where

Z∗
q is the automorphism group of Zq for k ≥ 3. By Proposition 1 and

Theorem 3, let q be 2. Then

E(X) ∼= (Z2 ⊕ Z∗
2)⊕ Z2 ⊕ 0

⊕(Z2 ⊕ Z2)⊕ (Z2 ⊕ Z∗
2)⊕ Z2

⊕(Z2 ⊕ Z2 ⊕ Z(q,24))⊕ (Z2 ⊕ Z2)⊕ (Z2 ⊕ Z∗
2).

We define the subgroup Zk
♯ [Mj ,Mk] = {fkj | π≤k(fkj) = 0} of [Mj ,Mk].

From now on, we determine Zk
♯ [Mj ,Mk] for j, k = 1, 2, 3 and j ̸= k.

Remark 4. By [6, Theorems 3.4 and 3.5], we have

q is odd q ≡ 2 (mod 4) q ≡ 0 (mod 4)
Zn+2
♯ [M2,M1] Zq 0 0

Zn+2
♯ [M3,M2] Zq 0 0

Zn+2
♯ [M1,M2] 0 Z2 Z2 ⊕ Z2

Zn+2
♯ [M2,M3] 0 0 0

It sufficiently determines that Zn+2
♯ [M3,M1].

Lemma 2.

q is odd q ≡ 2 (mod 4) q ≡ 0 (mod 4)
Zn+2
♯ [M1,M3] Z(q,24) Z(q,24) ⊕ Z2 Z(q,24) ⊕ Z2

Proof. Consider the mapping cone sequence of M1,

Sn+2 q // Sn+2 i1 // M1
π1 // Sn+3 q // Sn+3.

This sequence induces the following exact sequence:

[Sn+3,M3]
q // [Sn+3,M3]

π♯
1 // [M1,M3]

i♯1 // [Sn+2,M3]
q // [Sn+2,M3].

By Propositions 1 and 2, we have the split exact sequence

0 // [Sn+3,M3]
π♯
1 // [M1,M3]

i♯1 // ker(q) // 0.

Thus [M1,M3] = π♯
1([S

n+3,M3])⊕ (i♯1)
−1(ker(q)).

By Remark 2 and properties of split exact sequence, π1 ◦ i1 = C∗
and ((i♯1)

−1(ker(q)))(i1) = i♯1((i
♯
1)

−1(ker(q))) = ker(q) where C∗ is the
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constant map. We have Zn+2
♯ [M1,M3] = π♯

1([S
n+3,M3]). Since π♯

1 is

monomorphism, Zn+2
♯ [M1,M3] ∼= [Sn+3,M3].

Theorem 4.

Edim
♯ (X)

q : odd Zq ⊕ (Z(q,24))⊕ Zq

q ≡ 2 (mod 4) Z2 ⊕ (Z(q,24) ⊕ Z2)⊕ Z2

q ≡ 0 (mod 4) Z2 ⊕ (Z(q,24) ⊕ Z2)⊕ (Z2 ⊕ Z2)

Proof. For any f ∈ Edim
♯ (X), by Propositions 5 and 6, we have

θ(π≤dim(f)) = θ(idπ≤dim(X)) =

idπ≤n+2(M1) 0 0

0 idπ≤n+2(M2) 0

0 0 idπ≤n+2(M3)

 .

Thus f11 ∈ En+2
♯ (M1), f22 ∈ En+2

♯ (M2) and f33 ∈ En+2
♯ (M3). Further-

more, π≤dim(fkj) = 0 for k ̸= j. By Theorems 1 and 2, it is implies
that

Edim
♯ (X) ∼= En+2

♯ (M1)⊕ Zn+2
♯ [M2,M1]⊕ 0

⊕Zn+2
♯ [M1,M2]⊕ 1⊕ Zn+2

♯ [M3,M2]

⊕Zn+2
♯ [M1,M3]⊕ Zn+2

♯ [M2,M3]⊕ 1.

The proof is completed by Theorem 2, Remark 4 and Lemma 2.
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