References
- M. Arkowitz, G. Lupton, and A. Murillo, Subgroups of the group of self-homotopy equivalences, Contemporary Mathematics 274 (2001), 21-32 https://doi.org/10.1090/conm/274/04453
- M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998), no. 2, 133-154 https://doi.org/10.1016/S0166-8641(97)00162-4
- H. J. Baues, Homotopy type and homology, Clarendon Press, Oxford, 1996
- E. Dror and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), no. 3, 187-197 https://doi.org/10.1016/0040-9383(79)90002-8
- D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-756 https://doi.org/10.2307/2373349
- P. Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London Paris, 1965
- P. J. Kahn, Self-equivalences of (n-1)-connected 2n-manifolds, Math. Ann. 180 (1969), 26-47 https://doi.org/10.1007/BF01350084
- K. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136 (1989), no. 2, 293-301 https://doi.org/10.2140/pjm.1989.136.293
- K. Maruyama, Localization of self-homotopy equivalences inducing the identity on ho- mology, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 291-297 https://doi.org/10.1017/S0305004100069140
- K. Maruyama, Stability properties of maps between Hopf spaces, Q. J. Math. 53 (2002), no. 1, 47-57 https://doi.org/10.1093/qjmath/53.1.47
- N. Oda, Pairings and copairings in the category of topological spaces, Publ. Res. Inst. Math. Sci. 28 (1992), no. 1, 83-97 https://doi.org/10.2977/prims/1195168857
- S. Oka, N. Sawashita, and M. Sugawara, On the group of self-equivalences of a mapping cone, Hiroshima Math. J. 4 (1974), 9-28
- J. W. Rutter, A homotopy classi¯cation of maps into an induced fibre space, Topology 6 (1967), 379-403 https://doi.org/10.1016/0040-9383(67)90025-0
- K. Varadarajan, Generalised Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164
- G. W. Whitehead, Elements of homotopy theory, Graduate texts in Mathematics 61, Springer-Verlag, New York Heidelberg Berlin, 1978
- M. H. Woo and J.-R. Kim, Certain subgroups and homotopy groups, J. Korean. Math. Soc. 21 (1984), no. 2, 109-120
Cited by
- Cocyclic element preserving pair maps and fibrations vol.191, 2015, https://doi.org/10.1016/j.topol.2015.05.052
- The set of cyclic-element preserving maps vol.160, pp.6, 2013, https://doi.org/10.1016/j.topol.2013.02.002