CERTAIN SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES OF THE WEDGE OF TWO MOORE SPACES

Myung Hwa Jeong

Abstract

For a based, 1-connected, finite CW-complex X, we denote by $\mathcal{E}(X)$ the group of homotopy classes of self-homotopy equivalences of X and by $\mathcal{E}_{\#}^{\operatorname{dim}+r}(X)$ the subgroup of homotopy classes which induce the identity on the homotopy groups of X in dimensions $\leq \operatorname{dim} X+r$. In this paper, we calculate the subgroups $\mathcal{E}_{\#} \operatorname{dim}+r(X)$ when X is a wedge of two Moore spaces determined by cyclic groups and in consecutive dimensions.

1. Introduction

For a based space X, we denote by $1: X \rightarrow X$ the identity. Then the set $[X, X]$ be the semi-group with respect to the composition of maps having unit 1 , and the subset $\mathcal{E}(X)(\subset[X, X])$ of homotopy classes of self-homotoy equivalences of X is a group.

For a finite CW-complex X, let $\mathcal{E}_{*}(X)$ be the subgroup of homotopy classes which induce the identity on the homology groups of X and $\mathcal{E}_{\#}^{\operatorname{dim}+r}(X)$ be the subgroup of homotopy classes which induce the identity on the homotopy groups of X in dimensions $\leq \operatorname{dim} X+r$. The group $\mathcal{E}(X)$ and the subgroup $\mathcal{E}_{\#}{ }^{\operatorname{dim}+r}(X)$ have been studied extensively. For a survey of known results and applications of $\mathcal{E}(X)$, see [2], and for a list of references on the subgroups mentioned above, see [3]. In particular, Arkowitz and Maruyama examined $\mathcal{E}_{\#}{ }^{\operatorname{dim}+r}(X)$ for Moore spaces X, see [4].

In this paper we calculate the subgroups $\mathcal{E}_{\#}{ }^{\operatorname{dim}+r}(X)$ when X is the wedge of two Moore spaces.

We fix some notations and conventions. We shall work in the category of spaces with base points and maps preserving the base points. If $f: X \rightarrow Y$ is a map, then $f_{* n}: H_{n}(X) \rightarrow H_{n}(Y)$ and $f_{\# n}: \pi_{n}(X) \rightarrow \pi_{n}(Y)$ denote, respectively the induced homology and homotopy homomorphism in dimension n. The subscript ' n ' will often be omitted. In this paper we do not distinguish notationally between a map $X \rightarrow Y$ and its homotopy class in $[X, Y]$.

Received June 4, 2009.
2000 Mathematics Subject Classification. 55P10.
Key words and phrases. self-homotopy equivalences, Moore spaces.

If G is an abelian group and $n \geq 3$ an integer, then the Moore space $M(G, n)$ is the space, unique up to homotopy type, characterized by

$$
\widetilde{H}_{i}(M(G, n))=\left\{\begin{array}{cc}
G, & i=n \\
0, & i \neq n
\end{array}\right.
$$

If G is free-abelian, $M(G, n)$ is just a wedge of the n-spheres. Note that when G is finitely-generate, $M(G, n)$ is a finite CW-complex of $\operatorname{dim} n$ if G is free-abelian and of $\operatorname{dim} n+1$ if G is not free-abelian. Since $M(G, n)$ is a double suspension, the set of homotopy classes $[M(G, n), X]$ can be given abelian group structure with binary operation ' + '.

Finally, if A is an abelian group, we write

$$
\bigoplus^{r} A=A \oplus \cdots \oplus A \quad(r \text { summands }) .
$$

We also use ' \oplus ' to denote cartesian product of sets.

2. Preliminaries

We begin with some results needed in this paper.
Proposition 2.1. If X is $(k-1)$-connected and Y is $(l-1)$-connected, $k, l \geq 2$, and $\operatorname{dim} P<k+l-1$, then the projections $X \vee Y \rightarrow X$ and $X \vee Y \rightarrow Y$ induce a bijection

$$
[P, X \vee Y] \rightarrow[P, X] \oplus[P, Y]
$$

Proposition 2.1 is a consequence of [5, p. 405] since the inclusion $X \vee Y \rightarrow$ $X \times Y$ is a $(k+l-1)$-equivalence.

Next we consider abelian groups G_{1} and G_{2} and Moore spaces $M_{1}=M\left(G_{1}, n_{1}\right)$ and $M_{2}=M\left(G_{2}, n_{2}\right)$. Let $X=M_{1} \vee M_{2}=M\left(G_{1}, n_{1}\right) \vee M\left(G_{2}, n_{2}\right)$ and denote by $i_{j}: M_{j} \rightarrow X$ the inclusions and by $p_{j}: X \rightarrow M_{j}$ the projections, $j=1,2$. If $f: X \rightarrow X$, then define $f_{j k}: M_{k} \rightarrow M_{j}$ by $f_{j k}=p_{j} f i_{k}$ for $j, k=1,2$.

Proposition 2.2. The function θ which assigns to each $f \in[X, X]$, the 2×2 matrix

$$
\theta(f)=\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)
$$

where $f_{j k} \in\left[M_{k}, M_{j}\right]$, is a bijection. In addition,
(1) $\theta(f+g)=\theta(f)+\theta(g)$, so θ is an isomorphism $[X, X] \rightarrow \bigoplus_{j, k=1,2}\left[M_{k}, M_{j}\right]$.
(2) $\theta(f g)=\theta(f) \theta(g)$, where $f g$ denotes composition in $[X, X]$ and $\theta(f) \theta(g)$ denotes matrix multiplication.
(3) under the identification $H_{r}\left(M_{1} \vee M_{2}\right)=H_{r}\left(M_{1}\right) \oplus H_{r}\left(M_{2}\right)$, we have

$$
f_{* r}(x, y)=\left(f_{11 * r}(x)+f_{12 * r}(y), f_{21 * r}(x)+f_{22 * r}(y)\right)
$$

for $x \in H_{r}\left(M_{1}\right)$ and $y \in H_{r}\left(M_{2}\right)$.
(4) If $\alpha_{r}: \pi_{r}\left(M_{1}\right) \oplus \pi_{r}\left(M_{2}\right) \rightarrow \pi_{r}\left(M_{1} \vee M_{2}\right)$ and $\beta_{r}: \pi_{r}\left(M_{1} \vee M_{2}\right) \rightarrow$ $\pi_{r}\left(M_{1}\right) \oplus \pi_{r}\left(M_{2}\right)$ are the homomorphisms induced by the inclusions and projections, respectively, then

$$
\beta_{r} f_{\# r} \alpha_{r}(x, y)=\left(f_{11 \# r}(x)+f_{12 \# r}(y), f_{21 \# r}(x)+f_{22 \# r}(y)\right)
$$

for $x \in \pi_{r}\left(M_{1}\right)$ and $y \in \pi_{r}\left(M_{2}\right)$.
Proof. Clearly $[X, X] \approx\left[M_{1}, X\right] \oplus\left[M_{2}, X\right]$. And $\left[M_{j}, X\right] \approx\left[M_{j}, M_{1}\right] \oplus\left[M_{j}, M_{2}\right]$ by Proposition 2.1 for $j=1,2$. Then $[X, X] \approx\left[M_{1}, M_{1}\right] \oplus\left[M_{1}, M_{2}\right] \oplus\left[M_{2}, M_{1}\right] \oplus$ [M_{2}, M_{2}]. The rest of the proof is straightforward and hence omitted.

The homotopy groups $\pi_{n+k}(M(G, n))$ and the groups of homotopy classes $[M(G, n+k), M(G, k)]$ have been determined by Araki and Toda [1] when G is the cyclic group $\mathbb{Z}_{q}(q>1)$ in stable homotopy category. They obtained the following results. See [1] if you want to know that in details.

Proposition $2.3([1]) .(1) \pi_{n}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \approx \mathbb{Z}_{q}$ for all q.
(2) $\pi_{n+1}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \approx \begin{cases}0 & \text { for } q: \text { odd } \\ \mathbb{Z}_{2} & \text { for } q \equiv 2(\bmod 4) \\ \mathbb{Z}_{2} & \text { for } q \equiv 0(\bmod 4) .\end{cases}$
(3) $\pi_{n+2}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \approx\left\{\begin{array}{cl}0 & \text { for } q: \text { odd } \\ \mathbb{Z}_{4} & \text { for } q \equiv 2(\bmod 4) \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { for } q \equiv 0(\bmod 4) .\end{array}\right.$
(4) $\pi_{n+3}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \approx\left\{\begin{array}{cl}\mathbb{Z}_{(q, 24)} & \text { for } q: \text { odd } \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{(q, 24)} & \text { for } q \equiv 2(\bmod 4) \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{(q, 24)} & \text { for } q \equiv 0(\bmod 4) .\end{array}\right.$

Proposition $2.4([1]) .(1)\left[\left(M\left(\mathbb{Z}_{q}, n-1\right)\right),\left(M\left(\mathbb{Z}_{q}, n\right)\right)\right] \approx \mathbb{Z}_{q}$ for all q.
(2) $\left[\left(M\left(\mathbb{Z}_{q}, n\right)\right),\left(M\left(\mathbb{Z}_{q}, n\right)\right)\right] \approx\left\{\begin{array}{cl}\mathbb{Z}_{q} & \text { for } q: \text { odd } \\ \mathbb{Z}_{2 q} & \text { for } q \equiv 2(\bmod 4) \\ \mathbb{Z}_{q} \oplus \mathbb{Z}_{2} & \text { for } q \equiv 0(\bmod 4) .\end{array}\right.$
(3) $\left[\left(M\left(\mathbb{Z}_{q}, n+1\right)\right),\left(M\left(\mathbb{Z}_{q}, n\right)\right)\right] \approx\left\{\begin{array}{cl}0 & \text { for } q: \text { odd } \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { for } q \equiv 2(\bmod 4) \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { for } q \equiv 0(\bmod 4) .\end{array}\right.$
(4) $\left[\left(M\left(\mathbb{Z}_{q}, n+2\right)\right),\left(M\left(\mathbb{Z}_{q}, n\right)\right)\right] \approx\left\{\begin{array}{cl}\mathbb{Z}_{(q, 24)} & \text { for } q: \text { odd } \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{(q, 24)} & \text { for } q \equiv 2(\bmod 4) \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{(q, 24)} & \text { for } q \equiv 0(\bmod 4) .\end{array}\right.$

We also need the following theorem.
Theorem 2.5 ([4]). For the Moore space $X=M(G, n)$,
(1) $\mathcal{E}_{\#}^{\operatorname{dim}}(X) \approx \bigoplus^{(r+s) s} \mathbb{Z}_{2}$, where r is the rank of G and s is the number of

2- torsion summands in G.
(2) $\mathcal{E}_{\#}^{\operatorname{dim}+1}(X)=1$ if $n>3$.

3. Wedge of two Moore spaces

In this section we completely determine the group $\mathcal{E}_{\#}{ }^{\operatorname{dim}+r}(X)$ for $X=$ $M\left(\mathbb{Z}_{q}, n+1\right) \vee M\left(\mathbb{Z}_{q}, n\right), n \geq 5$.

From now on, we let $M_{1}=M\left(\mathbb{Z}_{q}, n+1\right)=S^{n+1} \cup_{q} e^{n+2}$ and $M_{2}=$ $M\left(\mathbb{Z}_{q}, n\right)=S^{n} \cup_{q} e^{n+1}, q>1$. And we let $f \in[X, X]$ and use the notation of Section 2 so that $f_{j k}=p_{j} f i_{k} \in\left[M_{k}, M_{j}\right]$ for $j, k=1,2$. Then $f \in \mathcal{E}(X) \Leftrightarrow f_{* n}, f_{* n+1}$ are isomorphisms. By Proposition 2.2, we can identify $f \in \mathcal{E}(X)$ with the 2×2 matrix

$$
\theta(f)=\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)
$$

where $f_{11} \in \mathcal{E}\left(M_{1}\right), f_{12} \in\left[M_{2}, M_{1}\right], f_{21} \in\left[M_{1}, M_{2}\right], f_{22} \in \mathcal{E}\left(M_{2}\right)$. The group structure in $\mathcal{E}(X)$ is then given by matrix multiplication.

Lemma 3.1. Let $f \in[X, X]$ be given by $f=\left(\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right)$. Then

$$
f \in \mathcal{E}(X) \Leftrightarrow f_{11} \in \mathcal{E}\left(M_{1}\right) \text { and } f_{22} \in \mathcal{E}\left(M_{2}\right) .
$$

Proof. $f \in \mathcal{E}(X) \Leftrightarrow f_{* n}, f_{* n+1}$ are isomorphisms $\Leftrightarrow f_{22 * n}, f_{11 * n+1}$ are isomorphisms $\Leftrightarrow f_{11} \in \mathcal{E}\left(M_{1}\right), f_{22} \in \mathcal{E}\left(M_{2}\right)$.

Lemma 3.2. $\pi_{n+k}\left(M_{1} \vee M_{2}\right) \approx \pi_{n+k}\left(M_{1}\right) \oplus \pi_{n+k}\left(M_{2}\right)$ for $k=0,1,2,3$.
Proof. The Moore spaces M_{1} and M_{2} are n-connected and ($n-1$)-connected, respectively and $n \geq 5$. By Proposition 2.1, $\left[S^{n+k}, M_{1} \vee M_{2}\right] \approx\left[S^{n+k}, M_{1}\right] \oplus$ [S^{n+k}, M_{2}] for $k<n$.

From Lemma 3.2, it is clear that

$$
\begin{aligned}
& f_{\# n+k}(x, y)=\left(\begin{array}{ll}
f_{11 \# n+k} & f_{12 \# n+k} \\
f_{21 \# n+k} & f_{22 \# n+k}
\end{array}\right)\binom{x}{y}, \\
& \quad \forall x \in \pi_{n+k}\left(M_{1}\right), \forall y \in \pi_{n+k}\left(M_{2}\right), k=0,1,2,3 .
\end{aligned}
$$

Lemma 3.3. Let $f \in \mathcal{E}_{\#}^{\operatorname{dim}}(X)$ be given by $f=\left(\begin{array}{cc}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right)$. Then $f_{22}=1$.
Proof. By Lemma 3.2 and Proposition 2.2, $f_{22} \in \mathcal{E}_{\#}^{\operatorname{dim} X}\left(M_{2}\right)$. We know that $\operatorname{dim} X=n+2$ and $\operatorname{dim} M_{2}=n+1$. So $f_{22}=1$ from Theorem 2.5(2).

From now on, it suffices that we consider just f_{11}, f_{12}, f_{21}.
Theorem 3.4. For the space $X=M_{1} \vee M_{2}$,

$$
\mathcal{E}_{\#}^{\operatorname{dim}}(X) \approx\left\{\begin{array}{cl}
\mathbb{Z}_{q}, & \text { if } q: \text { odd } \\
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, & \text { if } q \equiv 2(\bmod 4) \\
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, & \text { if } q \equiv 0(\bmod 4)
\end{array}\right.
$$

Proof. By Proposition 2.2, $[X, X] \approx\left[M_{1}, M_{1}\right] \oplus\left[M_{1}, M_{2}\right] \oplus\left[M_{2}, M_{1}\right] \oplus\left[M_{2}, M_{2}\right]$.
First, in the case q is odd: Since $\left[M_{1}, M_{2}\right] \approx 0, f_{21}=0$. By Theorem 2.5(1), $\mathcal{E}_{\#}^{n+2}\left(M_{1}\right)=1$. So $f_{11}=1$. Since $\pi_{n+1}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \approx 0, \pi_{n+2}\left(M\left(\mathbb{Z}_{q}, n\right)\right) \approx 0$, and $\pi_{n}\left(M\left(\mathbb{Z}_{q}, n+1\right)\right) \approx 0, f_{12 \# k}=0$ for all $k \leq n+2$. So $\left(\begin{array}{cc}1 & f_{12} \\ 0 & 1\end{array}\right)$ belongs to $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X)$ for any f in $\left[M_{2}, M_{1}\right]$. By Proposition 2.4, $\left[M_{2}, M_{1}\right] \approx \mathbb{Z}_{q}=\langle i \pi\rangle$. Therefore

$$
\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X) \approx\left\{\left.\left(\begin{array}{ll}
1 & f_{12} \\
0 & 1
\end{array}\right) \right\rvert\, f_{12} \in\langle i \pi\rangle\right\}
$$

Therefore $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X) \approx \mathbb{Z}_{q}$.
Second, in the case $q \equiv 2(\bmod 4)$: By Proposition 2.4, $\left[M_{1}, M_{1}\right] \approx \mathbb{Z}_{2 q}=$ $\langle 1\rangle$. We know that $\pi_{n+1}\left(M_{1}\right) \approx \mathbb{Z}_{q}=\langle i\rangle$ and $\pi_{n+2}\left(M_{1}\right) \approx \mathbb{Z}_{2}=\langle i \eta\rangle$, where $i: S^{n+1} \hookrightarrow M_{1}$ is inclusion and η is the generator of $\pi_{n+2}\left(S^{n+1}\right)$. Let $\pi: M_{1} \rightarrow$ S^{n+2} be the map shrinking S^{n+1} to the base point of S^{n+2}. Then $\pi i: S^{n+1} \rightarrow$ S^{n+2} is trivial. So $(i \eta \pi)_{\# n+1}(i)=i \eta \pi i=0$ and $(i \eta \pi)_{\# n+2}(i \eta)=i \eta \pi i \eta=0$. Thus $\left(\begin{array}{cc}1+i \eta \pi & 0 \\ 0 & 1\end{array}\right)$ belongs to $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X)$. By Theorem 2.5(1), $\mathcal{E}_{\#}{ }^{\operatorname{dim}}\left(M_{1}\right) \approx \mathbb{Z}_{2}$. So $f_{11} \in 1+\langle i \eta \pi\rangle$.

When q is even, there exist elements $\bar{\eta} \in\left[M_{2}, S^{n-1}\right]$ and $\widetilde{\eta} \in\left[S^{n+2}, M_{2}\right]$ such that $\bar{\eta} i=\eta$ and $\pi \widetilde{\eta}=\eta$. Consider $\left[M_{2}, M_{1}\right] \approx \mathbb{Z}_{q}=\langle i \pi\rangle$ and $\pi_{n+2}\left(M_{2}\right) \approx \mathbb{Z}_{4}=$ $\langle\widetilde{\eta}\rangle$. Since $(i \pi)_{\# n+2}(\widetilde{\eta})=i \pi \widetilde{\eta}=i \eta \neq 0,\left(\begin{array}{cc}1 & i \pi \\ 0 & i \pi\end{array}\right)$ does not belong to $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X)$. So if $f \in \mathcal{E}_{\#}^{\text {dim }}(X)$, then $f_{12}=0$.

Now let us consider f_{21}. For even q, we use the following notations $\eta_{1}=$ $i \bar{\eta}$ and $\eta_{2}=\widetilde{\eta} \pi$. Then $\left[M_{1}, M_{2}\right] \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}=\left\langle\eta_{1}\right\rangle \oplus\left\langle\eta_{2}\right\rangle$. We know that $\pi_{n+1}\left(M_{1}\right) \approx \mathbb{Z}_{2}=\langle i\rangle . \eta_{1 \# n+1}(i)=\eta_{1} i=i \bar{\eta} i=i \eta \neq 0$. Hence $\left(\begin{array}{cc}1 & 0 \\ \eta_{1} & 1\end{array}\right)$ does not belong to $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X)$. On the other hand $\eta_{2 \# n+1}(i)=\eta_{2} i=\widetilde{\eta} \pi i=0$ and $\eta_{2 \# n+2}(i \eta)=\eta_{2} i \eta=\widetilde{\eta} \pi i \eta=0$. So $\left(\begin{array}{cc}1 & 0 \\ \eta_{2} & 1\end{array}\right)$ belongs to $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X)$. Thus we conclude the following results.

$$
\mathcal{E}_{\#}^{\operatorname{dim}}(X) \approx\left\{\left.\left(\begin{array}{cc}
1+\epsilon & 0 \\
f_{21} & 1
\end{array}\right) \right\rvert\, \epsilon \in\langle i \eta \pi\rangle, \epsilon^{2}=1 \text { and } f_{21} \in\left\langle\eta_{2}\right\rangle, \eta_{2}^{2}=1\right\} .
$$

Therefore $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X) \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
Last, in the case $q \equiv 0(\bmod 4)$: By Proposition 2.4, $\left[M_{1}, M_{1}\right] \approx \mathbb{Z}_{q} \oplus \mathbb{Z}_{2}=$ $\langle 1\rangle \oplus\langle i \eta \pi\rangle$. By the same manner in case $q \equiv 2(\bmod 4),\left(\begin{array}{c}1+i \eta \pi \\ 0 \\ 0\end{array}\right)$ belongs to $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X)$.

And $\left[M_{1}, M_{2}\right] \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}=\left\langle\eta_{1}\right\rangle \oplus\left\langle\eta_{2}\right\rangle \oplus\left\langle i \eta^{2} \pi\right\rangle$. Since $\eta_{1 \# n+2}(i \eta)=$ $\eta_{1} i \eta=i \bar{\eta} i \eta=i \eta^{2} \neq 0,\left(\begin{array}{ll}1 & 0 \\ \eta_{1} & 1\end{array}\right)$ does not belong to $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X)$. However $\eta_{2 \# n+1}(i)=\eta_{2} i=\widetilde{\eta} \pi i=0, \eta_{2 \# n+2}(i \eta)=\eta_{2} i \eta=\widetilde{\eta} \pi i \eta=0,\left(i \eta^{2} \pi\right)_{\# n+2}(i)=0$ and $\left(i \eta^{2} \pi\right)_{2 \# n+2}(i \eta)=0$. So $\left(\begin{array}{cc}1 & 0 \\ \eta_{2} & 1\end{array}\right)$ and $\left(\begin{array}{rr}1 & 0 \\ i \eta^{2} \pi & 1\end{array}\right)$ belong to $\mathcal{E}_{\#}^{\operatorname{dim}+1}(X)$. Now $\left[M_{2}, M_{1}\right] \approx \mathbb{Z}_{2}=\langle i \pi\rangle$ and $\pi_{n+2}\left(M_{2}\right) \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}=\langle\tilde{\eta}\rangle \oplus\left\langle i \eta^{2}\right\rangle$. Since $(i \pi)_{\# n+2}(\widetilde{\eta})=i \pi \widetilde{\eta}=i \eta \neq 0,\left(\begin{array}{cc}1 & i \pi \\ 0 & 1\end{array}\right)$ does not belong to $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X)$. Thus we
conclude the following results.

$$
\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X) \approx\left\{\left.\left(\begin{array}{cc}
1+\epsilon & 0 \\
f_{21} & 1
\end{array}\right) \right\rvert\, f_{21} \in\left\langle\eta_{2}\right\rangle \oplus\left\langle i \eta^{2} \pi\right\rangle, \eta_{2}^{2}=1,\left(i \eta^{2} \pi\right)^{2}=1\right\}
$$

Therefore $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X) \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
Theorem 3.5. For the space $X=M_{1} \vee M_{2}, \quad n \geq 5$,

$$
\mathcal{E}_{\#}{ }^{\operatorname{dim}+1}(X) \approx\left\{\begin{array}{cl}
\mathbb{Z}_{q}, & \text { if } q: \text { odd } \\
1, & \text { if } q \equiv 2(\bmod 4) \\
1, & \text { if } q \equiv 0 \quad(\bmod 4)
\end{array}\right.
$$

Proof. First, in the case q is odd: Since $\mathcal{E}_{\#}{ }^{\operatorname{dim}+1}(X) \subseteq \mathcal{E}_{\#}{ }^{\operatorname{dim}}(X)$, it suffices to consider $\left[M_{2}, M_{1}\right] \approx \mathbb{Z}_{q}=\langle i \pi\rangle$. We know that $\pi_{n+3}\left(M_{2}\right) \approx \mathbb{Z}_{(q, 24)}=\langle i \nu\rangle$. And $i \pi_{\# n+3}(i \nu)=i \pi i \nu=0$. Therefore $\mathcal{E}_{\#}{ }^{\operatorname{dim}+1}(X) \cong \mathbb{Z}_{q}$. That is $\mathcal{E}_{\#}{ }^{\operatorname{dim}+1}(X)=$ $\mathcal{E}_{\#}{ }^{\operatorname{dim}}(X)$.

Second, in the case $q \equiv 2(\bmod 4)$: By Theorem $2.5, \mathcal{E}_{\#}{ }^{\operatorname{dim}+1}\left(M_{1}\right)=1$. Hence, it suffices to consider only $\eta_{2} . \pi_{n+3}\left(M_{1}\right) \approx \mathbb{Z}_{4}=\langle\widetilde{\eta}\rangle$, and $\left(\eta_{2}\right)_{\# n+3}(\widetilde{\eta})=$ $\eta_{2} \widetilde{\eta}=\widetilde{\eta} \pi \widetilde{\eta}=\widetilde{\eta} \eta \neq 0$. Therefore $\left(\begin{array}{ll}1 & 0 \\ \eta_{2} & 1\end{array}\right)$ does not belong to $\mathcal{E}_{\#}^{\operatorname{dim}+1}(X)$. Thus we can conclude $\mathcal{E}_{\#}{ }^{\operatorname{dim}+1}(X)=1$.

Last, in the case $q \equiv 0(\bmod 4)$: It suffices to consider just two generators η_{2}, i $\eta^{2} \pi$. $\pi_{n+3}\left(M_{1}\right) \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}=\langle\widetilde{\eta}\rangle \oplus\left\langle i \eta^{2}\right\rangle$. Like the second case, $\left(\eta_{2}\right)_{\# n+3}(\widetilde{\eta}) \neq 0$ and $\left(i \eta^{2} \pi\right)_{\# n+3}(\widetilde{\eta})=i \eta^{2} \pi \eta=i \eta^{3} \neq 0$. Finally, we obtain the result $\mathcal{E}_{\#}{ }^{\operatorname{dim}+1}(X)=1$.

We denote by $\mathcal{Z}(X)$ the subset of $[X, X]$ consisting of all homotopy classes which induces the trivial homomorphism on homotopy groups in dimensions less than or equal to $\operatorname{dim} X$. Consider the bijection map $T: \mathcal{E}_{\#}{ }^{\operatorname{dim}}(X) \rightarrow \mathcal{Z}(X)$ defined by the translation by the identity map, that is, $T(f)=f-1$.
Corollary 3.6. For the space $X=M_{1} \vee M_{2}$,
(1) if q : odd, then

$$
\mathcal{Z}(X) \approx\left\{\left.\left(\begin{array}{cc}
0 & 0 \\
f_{21} & 0
\end{array}\right) \right\rvert\, f_{21} \in\langle i \pi\rangle,(i \pi)^{q}=1\right\}
$$

(2) if $q \equiv 2(\bmod 4)$, then

$$
\mathcal{Z}(X) \approx\left\{\left.\left(\begin{array}{cc}
f_{11} & 0 \\
f_{21} & 0
\end{array}\right) \right\rvert\, f_{11} \in\langle i \eta \pi\rangle, f_{21} \in\left\langle\eta_{2}\right\rangle,(i \eta \pi)^{2}=1, \eta_{2}^{2}=1\right\}
$$

and
(3) if $q \equiv 0(\bmod 4)$, then

$$
\mathcal{Z}(X) \approx\left\{\left.\left(\begin{array}{ll}
f_{11} & 0 \\
f_{21} & 0
\end{array}\right) \right\rvert\, f_{11} \in\langle i \eta \pi\rangle, f_{21} \in\left\langle\eta^{2}\right\rangle \oplus\left\langle i \eta^{2} \pi\right\rangle,\left(i \eta^{2} \pi\right)^{2}=1\right\}
$$

Acknowledgement. The author would like to thank Professor Maruyama for many helpful advice.

References

[1] S. Araki and Toda, Multiplicative structure in mod q cohomology theories I, Osaka J. Math. 2 (1965), 71-115.
[2] M. Arkowitz, The group of self-homotopy equivalences - a survey, in: R. Piccinini, ed., Lecture Notes in Math. 1425 (Springer, New York, 1990), 170-203.
[3] M. Arkowitz and G. Lupton, On finiteness of subgroups of self-homotopy equivalences, in: Contemporary Mathematics, Vol. 181 (American Mathematical Society, 1995), 1-25.
4] M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998), 133-154.
[5] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1996.
Division of General Education
Ajou University
Suwon 442-749, Korea
E-mail address: mhjeong@ajou.ac.kr

