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CERTAIN SUBGROUPS OF SELF-HOMOTOPY
EQUIVALENCES OF THE WEDGE OF
TWO MOORE SPACES

MyYUNG HwA JEONG

ABSTRACT. For a based, 1-connected, finite CW-complex X, we denote
by £(X) the group of homotopy classes of self-homotopy equivalences of X
and by S#dim *+7(X) the subgroup of homotopy classes which induce the
identity on the homotopy groups of X in dimensions < dim X +r. In this
paper, we calculate the subgroups £4 dim 47 (X) when X is a wedge of two
Moore spaces determined by cyclic groups and in consecutive dimensions.

1. Introduction

For a based space X, we denote by 1 : X — X the identity. Then the
set [X, X] be the semi-group with respect to the composition of maps having
unit 1, and the subset £(X)(C [X, X]) of homotopy classes of self-homotoy
equivalences of X is a group.

For a finite CW-complex X, let £,(X) be the subgroup of homotopy classes
which induce the identity on the homology groups of X and £4%™ ¥ (X) be
the subgroup of homotopy classes which induce the identity on the homotopy
groups of X in dimensions < dim X + r. The group £(X) and the subgroup
E4M™ T (X) have been studied extensively. For a survey of known results and
applications of £(X), see [2], and for a list of references on the subgroups
mentioned above, see [3]. In particular, Arkowitz and Maruyama examined
£, FT(X) for Moore spaces X, see [4].

In this paper we calculate the subgroups E#dim *7(X) when X is the wedge
of two Moore spaces.

We fix some notations and conventions. We shall work in the category of
spaces with base points and maps preserving the base points. If f : X — Y
is a map, then f., : Hy(X) — Hp(Y) and fu, @ m(X) — m,(Y) denote,
respectively the induced homology and homotopy homomorphism in dimension
n. The subscript ‘n’ will often be omitted. In this paper we do not distinguish
notationally between a map X — Y and its homotopy class in [X,Y].
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If G is an abelian group and n > 3 an integer, then the Moore space M (G, n)
is the space, unique up to homotopy type, characterized by

G, i=n,

morem={ § i5n

If G is free-abelian, M (G, n) is just a wedge of the n-spheres. Note that when G
is finitely-generate, M (G, n) is a finite CW-complex of dim n if G is free-abelian
and of dimn+1 if G is not free-abelian. Since M (G, n) is a double suspension,
the set of homotopy classes [M (G, n), X]| can be given abelian group structure
with binary operation ‘4.

Finally, if A is an abelian group, we write

@A:A®~-®A (r summands).

We also use ‘@’ to denote cartesian product of sets.

2. Preliminaries

We begin with some results needed in this paper.

Proposition 2.1. If X is (k—1)-connected and Y is (I—1)-connected, k,1 > 2,
and dim P < k+1—1, then the projections XVY — X and XVY — Y induce
a bijection

[P,XVY]— [P, X]|®[PY].

Proposition 2.1 is a consequence of [5, p. 405] since the inclusion X VY —
X xYisa (k41— 1)-equivalence.

Next we consider abelian groups G; and G and Moore spaces M1=M (G1,n1)
and My = M(Ga,n2). Let X = M1V My = M(G1,n1)V M (G2, n2) and denote
by i; : M; — X the inclusions and by p; : X — M the projections, j = 1,2.
If f: X — X, then define fj;, : My — M; by fjx = p;fix for j, bk =1,2.

Proposition 2.2. The function 0 which assigns to each f € [X, X], the 2 x 2
matric
Jir o fi2
0(f) = )
() ( fa1 fa2
where fji € [My, M;], is a bijection. In addition,
(1) 0(f+9)=0(f)+0(g), so 0 is an isomorphism [X, X] — @ j_; o[My, M;].
(2) 0(fg) = 0(f)0(g), where fg denotes composition in [X, X] and 6(f)60(g)

denotes matrix multiplication.
(3) under the identification H.(M; vV My) = H.(M;) & H,(Ms), we have

f*r(xvy) = (fll*r(x) + f12*r(y)7 f21*r(x) + f22*r(y))
forxz € H.(M;) and y € H,.(My).
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(4) If Qp 7T7‘(M1) D FT'(M2) - WT'(MI \ MQ) and 67' : 7"-7'(]\/[1 \ MQ) -
m-(My) ® 7. (Ms) are the homomorphisms induced by the inclusions and pro-
jections, respectively, then

Br faranr (2,y) = (frigr () + frogr (y), f2100 () + fo24r (y))
for x € m.(My) and y € 7, (Ms).

P?”OOf. Clearly [X,X] =~ [M17X]®[M2’X] And [MJ7X] ~ [Mj,Ml]@[MﬁMg}
by Proposition 2.1 for j = 1,2. Then [X, X| & [My, M1]|®[M;, My]|®[Ms, M;|®
[Ma, M5]. The rest of the proof is straightforward and hence omitted. O

The homotopy groups 7,4+, (M(G,n)) and the groups of homotopy classes
[M(G,n+ k), M(G, k)] have been determined by Araki and Toda [1] when G
is the cyclic group Z4(g > 1) in stable homotopy category. They obtained the
following results. See [1] if you want to know that in details.

Proposition 2.3 ( (1) 7 (M (Zg,n)) = Zq for all q.
0 forq: odd

Zy  for ¢ =2 (mod 4)

Zs for ¢ =0 (mod 4).

(2) 7rn+1

Zo®Zs for g=0 (mod 4).
Zq,24) for q: odd

Lo ® Lg,24y for g =2 (mod 4)

Ty @ Lgoay for =0 (mod 4).

(4) 7rn+3

0 for q : odd
(3) Tpt2(M(Zg,n) Zy for ¢ =2 (mod 4)

Proposition 2.4 ( (1) (M(Zg,n —1)),(M(Z4,n))] = Zg for all g.
Zq for q: odd
(2) [(M(Zg,n)),(M(Zg,n))l=q Zog  forq=2 (mod4)
Zg®Zy forq=0 (mod 4).
0 for q: odd
(3) (M(Zg,n+1)),(M(Zy,n))]~ Zo @ Zo for ¢ =2 (mod 4)
Zo®Zo®Zy for g=0 (mod 4).
L(q,24) for q: odd
4) (M(Zg,n+2)),(M(Zg,n))]~ Ly ® Ly ® Lg2ay  for ¢ =2 (mod 4)
Z2 (&) Z2 (&) ZQ D Z(q’24) fO’f‘ q= 0 (I'IlOd 4)

We also need the following theorem.

Theorem 2.5 ([4]). For the Moore space X = M(G,n),

(1) Eg™(X) ~ P 7y, where r is the rank of G and s is the number of
2- torsion summands in G.
(2) EL"HHX) =1 if n>3.



114 MYUNG HWA JEONG

3. Wedge of two Moore spaces

In this section we completely determine the group 5#dim (X)) for X =
M(Zg,n+ 1)V M(Zy,n), n > 5.

From now on, we let My = M(Zg,n + 1) = S"1 U, e and My =
M(Zg,n) = S™ Uy et ¢ > 1. And we let f € [X,X] and use the no-
tation of Section 2 so that f;rz = p;fix € [Mg,M;] for j,k = 1,2. Then
f €&(X) < fin, fent1 are isomorphisms. By Proposition 2.2, we can identify
f € E(X) with the 2 x 2 matrix

o fu fi2
bf) = ( Jo1 fa2 )7
where f11 S g(M1)7f12 S [MQ,Ml],fgl € [Ml,MQ],fQQ S E(MQ) The group

structure in £(X) is then given by matrix multiplication.

Lemma 3.1. Let f € [X, X] be given by f = ({11 2 ). Then

fe&(X) e fir € E(My) and fr € E(My).
Proof. f € E(X) < fun, fent+1 are isomorphisms < foo.n, f114n+1 are isomor-
phisms < f1; € E(My), fao € E(Ma). U
Lemma 3.2. 7, (M1 V M) ~ mpp1(M1) ® mpai(Ms) for k=0,1,2,3.

Proof. The Moore spaces My and Mj are n-connected and (n — 1)-connected,
respectively and n > 5. By Proposition 2.1, [S"Tk M, v M) ~ [S"F M) @
[SnHE M) for k < n. O

From Lemma 3.2, it is clear that

Jugntk  Srogntk z
Z, - ’
Santr(@,y) ( forsnsk  foosntk Yy

Va € 7Tn+k(M1),Vy S 7Tn+k(M2),k =0,1,2,3.

Lemma 3.3. Let f € ngm(X) be given by f = (21 gz) Then foo = 1.

Proof. By Lemma 3.2 and Proposition 2.2, foy € €%imX(M2). We know that
dim X =n+ 2 and dim My = n+ 1. So fa2 =1 from Theorem 2.5(2). O

From now on, it suffices that we consider just fi1, fi2, fo1.
Theorem 3.4. For the space X = My V My,

) ZLg, if q: odd
E49(X)~{  Zo®Zp,  ifq=2 (mod4)
ZQ@ZQ@ZQ, quEO (mod 4)
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Proof. By Proposition 2.2, [X, X| ~ [My, M1]|®[M;, M| ®[Ma, M1]|®[Ma, Ms].

First, in the case ¢ is odd: Since [M7, Ms] = 0, fa1 = 0. By Theorem 2.5(1),
ELTH(My) = 1. So fi1 = 1. Since T 11 (M (Zg,n)) = 0,7 42(M(Zg,n)) = 0,
and m,, (M (Zg,n + 1)) = 0, fiour =0for all k <n+2. So (| 12) belongs to
E4M™(X) for any f in [My, Mi]. By Proposition 2.4, [My, M| = Z, = (ir).

Therefore
ExM™(X) ~ {( é {12 ) |f12 € <i77>}~

Therefore £, (X) ~ Z,,.

Second, in the case ¢ = 2 (mod 4): By Proposition 2.4, [Mq, Mi] = Zyq =
(1). We know that m,41(M1) = Zq = (i) and m,42(M1) = Zy = (in), where
i: STt < M; is inclusion and 7 is the generator of 7,1 2(S"*1). Let 7 : M} —
S"*2 be the map shrinking S™"*! to the base point of S"*2. Then 7i : S*"t! —
S +2 s trivial. So (in7)gn41(i) = inmi = 0 and (inm)gni2(in) = inmin = 0.
Thus ('™ V) belongs to £,YM(X). By Theorem 2.5(1), E4Y™ (M) ~ Z,.
So f11 € 1+ (inm).

When q is even, there exist elements j € [Ma, S"~1] and 7 € [S"T2, Ms] such
that 77 = n and 777 = n. Consider [My, M1] = Z; = (im) and m,42(M2) = Zy =
(). Since (im)gnya(f)) = infj = in # 0, (3 ) does not belong to Ex4™(X).
Soif f € égjm(X), then f12 = 0.

Now let us consider fz;. For even ¢, we use the following notations 7; =
i and ne = nw. Then [My, Ms] ~ Zo ® Zo = (m1) © (n2). We know that
Tnt1(M1) = Za = (i). Mmgnt+1(t) = mi = ii = in # 0. Hence (7711 (1)) does
not belong to 4% ™(X). On the other hand 7jouny1(i) = 72i = 7jmi = 0 and
Nognt2(1n) = min = nmin = 0. So (n12 ?) belongs to E4M™(X). Thus we
conclude the following results.

im 1 0 .
E#d (%)~ {< f—2’—16 1 > le € (inm),e® =1 and for € (), 2% = 1}-

Therefore £,(X) ~ Zy ® Zy.

Last, in the case ¢ =0 (mod 4): By Proposition 2.4, [My, M|~ Z,® Zy =
(1) @ (inm). By the same manner in case ¢ =2 (mod 4), (/" {) belongs to
£, (X).

And [My, M| = Zo ® Zo ® Za = (m) ® (n2) ® (in?m). Since m1gni2(in) =
min = imin = in*> # 0, (,, ) does not belong to E#dim(X). However
Mogn41(6) = Ti = 1w = 0, 1agen 12(in) = nain = fmin = 0, (i°7)yn42(i) = 0
and (inm)2uns2(in) = 0. So (,,7) and (in127r(1)) belong to Ex4™ T (X).
Now [My, My] =~ Zy = (i7) and T i0(Ms) =~ Zy ® Zy = (1) ® (in?). Since
(i) gny2(7]) = im7 = in # 0, (}7) does not belong to £44™(X). Thus we
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conclude the following results.
im 1 +e€ 0 . .
E4 M (X) ~ {( fa 1 > a1 € () @ (in?m),m5 = 1, (in*m)* = 1}~

Therefore E#dim(X) ~ Ty © Lo © Zo. O

Theorem 3.5. For the space X = MV My, n > 5,
_ Zq, ifq:odd
E4Mm (XY~ { 1, ifg=2 (mod 4)
1, ifqg=0 (mod 4).

Proof. First, in the case ¢ is odd: Since E4M™ T1(X) C £,%™(X), it suffices to
consider [My, M| = Zq = (im). We know that 7, y3(M2) = Zg,24) = (iv). And
i yni3(iv) = imiv = 0. Therefore E4M™TH(X) = Z,. That is £, T(X) =
E4M(X).

Second, in the case ¢ = 2 (mod 4): By Theorem 2.5, E4%™ (M) = 1.
Hence, it suffices to consider only 9. mp43(M1) = Zs = (77), and (02) gn+3(7) =
non = nwn) = 7 # 0. Therefore (), ) does not belong to ExM™ (X)), Thus
we can conclude 49 (X)) = 1.

Last, in the case ¢ = 0 (mod 4): It suffices to consider just two genera-
tors ne, iN?m. Tuys(My) = Zo © Zy = (1) @ (in?). Like the second case,
(n2) gn+3(M) # 0 and (in?m)gn13(7) = in?mn = in® # 0. Finally, we obtain the
result £, (X)) = 1. O

We denote by Z(X) the subset of [X, X] consisting of all homotopy classes
which induces the trivial homomorphism on homotopy groups in dimensions
less than or equal to dim X. Consider the bijection map T : E49™(X) — Z(X)
defined by the translation by the identity map, that is, T'(f) = f — 1.

Corollary 3.6. For the space X = My V Mo,
(1) if q : odd, then

200 ~{( g o )lfar e tim.Gimr =1},
(2) if ¢ =2 (mod 4), then
200 = {( 1) ) 1 € tinm) S € (). i = 1 =1}

and
(3) if =0 (mod 4), then

Z(X)~ {( e ) [Fi1 € (inm), for € () & (inr), (inm)? = 1}.
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