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CERTAIN SUBGROUPS OF SELF-HOMOTOPY
EQUIVALENCES OF THE WEDGE OF

TWO MOORE SPACES

Myung Hwa Jeong

Abstract. For a based, 1-connected, finite CW-complex X, we denote
by E(X) the group of homotopy classes of self-homotopy equivalences of X

and by E#dim +r(X) the subgroup of homotopy classes which induce the
identity on the homotopy groups of X in dimensions ≤ dim X +r. In this
paper, we calculate the subgroups E#dim +r(X) when X is a wedge of two
Moore spaces determined by cyclic groups and in consecutive dimensions.

1. Introduction

For a based space X, we denote by 1 : X → X the identity. Then the
set [X, X] be the semi-group with respect to the composition of maps having
unit 1, and the subset E(X)(⊂ [X, X]) of homotopy classes of self-homotoy
equivalences of X is a group.

For a finite CW-complex X, let E∗(X) be the subgroup of homotopy classes
which induce the identity on the homology groups of X and E#

dim +r(X) be
the subgroup of homotopy classes which induce the identity on the homotopy
groups of X in dimensions ≤ dim X + r. The group E(X) and the subgroup
E#

dim +r(X) have been studied extensively. For a survey of known results and
applications of E(X), see [2], and for a list of references on the subgroups
mentioned above, see [3]. In particular, Arkowitz and Maruyama examined
E#

dim +r(X) for Moore spaces X, see [4].
In this paper we calculate the subgroups E#

dim +r(X) when X is the wedge
of two Moore spaces.

We fix some notations and conventions. We shall work in the category of
spaces with base points and maps preserving the base points. If f : X → Y
is a map, then f∗n : Hn(X) → Hn(Y ) and f#n : πn(X) → πn(Y ) denote,
respectively the induced homology and homotopy homomorphism in dimension
n. The subscript ‘n’ will often be omitted. In this paper we do not distinguish
notationally between a map X → Y and its homotopy class in [X, Y ].
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If G is an abelian group and n ≥ 3 an integer, then the Moore space M(G,n)
is the space, unique up to homotopy type, characterized by

H̃i(M(G, n)) =
{

G, i = n,
0, i 6= n.

If G is free-abelian, M(G,n) is just a wedge of the n-spheres. Note that when G
is finitely-generate, M(G, n) is a finite CW-complex of dim n if G is free-abelian
and of dim n+1 if G is not free-abelian. Since M(G,n) is a double suspension,
the set of homotopy classes [M(G,n), X] can be given abelian group structure
with binary operation ‘+’.

Finally, if A is an abelian group, we write
r⊕

A = A⊕ · · · ⊕A (r summands).

We also use ‘⊕’ to denote cartesian product of sets.

2. Preliminaries

We begin with some results needed in this paper.

Proposition 2.1. If X is (k−1)-connected and Y is (l−1)-connected, k, l ≥ 2,
and dim P < k+ l−1, then the projections X ∨Y → X and X ∨Y → Y induce
a bijection

[P, X ∨ Y ] → [P, X]⊕ [P, Y ].

Proposition 2.1 is a consequence of [5, p. 405] since the inclusion X ∨ Y →
X × Y is a (k + l − 1)-equivalence.

Next we consider abelian groups G1 and G2 and Moore spaces M1=M(G1,n1)
and M2 = M(G2, n2). Let X = M1∨M2 = M(G1, n1)∨M(G2, n2) and denote
by ij : Mj → X the inclusions and by pj : X → Mj the projections, j = 1, 2.
If f : X → X, then define fjk : Mk → Mj by fjk = pjfik for j, k = 1, 2.

Proposition 2.2. The function θ which assigns to each f ∈ [X, X], the 2× 2
matrix

θ(f) =
(

f11 f12

f21 f22

)
,

where fjk ∈ [Mk,Mj ], is a bijection. In addition,
(1) θ(f+g)=θ(f)+θ(g), so θ is an isomorphism [X, X] → ⊕

j,k=1,2[Mk,Mj ].
(2) θ(fg) = θ(f)θ(g), where fg denotes composition in [X,X] and θ(f)θ(g)

denotes matrix multiplication.
(3) under the identification Hr(M1 ∨M2) = Hr(M1)⊕Hr(M2), we have

f∗r(x, y) = (f11∗r(x) + f12∗r(y), f21∗r(x) + f22∗r(y))

for x ∈ Hr(M1) and y ∈ Hr(M2).
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(4) If αr : πr(M1) ⊕ πr(M2) → πr(M1 ∨ M2) and βr : πr(M1 ∨ M2) →
πr(M1) ⊕ πr(M2) are the homomorphisms induced by the inclusions and pro-
jections, respectively, then

βrf#rαr(x, y) = (f11#r(x) + f12#r(y), f21#r(x) + f22#r(y))

for x ∈ πr(M1) and y ∈ πr(M2).

Proof. Clearly [X, X] ≈ [M1, X]⊕[M2, X]. And [Mj , X] ≈ [Mj ,M1]⊕[Mj ,M2]
by Proposition 2.1 for j = 1, 2. Then [X, X] ≈ [M1,M1]⊕[M1,M2]⊕[M2, M1]⊕
[M2, M2]. The rest of the proof is straightforward and hence omitted. ¤

The homotopy groups πn+k(M(G, n)) and the groups of homotopy classes
[M(G,n + k),M(G, k)] have been determined by Araki and Toda [1] when G
is the cyclic group Zq(q > 1) in stable homotopy category. They obtained the
following results. See [1] if you want to know that in details.

Proposition 2.3 ([1]). (1) πn(M(Zq, n)) ≈ Zq for all q.

(2) πn+1(M(Zq, n)) ≈




0 for q : odd
Z2 for q ≡ 2 (mod 4)
Z2 for q ≡ 0 (mod 4).

(3) πn+2(M(Zq, n)) ≈




0 for q : odd
Z4 for q ≡ 2 (mod 4)

Z2 ⊕ Z2 for q ≡ 0 (mod 4).

(4) πn+3(M(Zq, n)) ≈




Z(q,24) for q : odd
Z2 ⊕ Z(q,24) for q ≡ 2 (mod 4)
Z2 ⊕ Z(q,24) for q ≡ 0 (mod 4).

Proposition 2.4 ([1]). (1) [(M(Zq, n− 1)), (M(Zq, n))] ≈ Zq for all q.

(2) [(M(Zq, n)),(M(Zq, n))]≈




Zq for q : odd
Z2q for q ≡ 2 (mod 4)

Zq ⊕ Z2 for q ≡ 0 (mod 4).

(3) [(M(Zq, n + 1)),(M(Zq, n))]≈




0 for q : odd
Z2 ⊕ Z2 for q ≡ 2 (mod 4)

Z2 ⊕ Z2 ⊕ Z2 for q ≡ 0 (mod 4).

(4) [(M(Zq, n+2)),(M(Zq, n))]≈




Z(q,24) for q : odd
Z2 ⊕ Z2 ⊕ Z(q,24) for q ≡ 2 (mod 4)

Z2 ⊕ Z2 ⊕ Z2 ⊕ Z(q,24) for q ≡ 0 (mod 4).

We also need the following theorem.

Theorem 2.5 ([4]). For the Moore space X = M(G,n),
(1) Edim

# (X) ≈ ⊕(r+s)s Z2, where r is the rank of G and s is the number of
2- torsion summands in G.

(2) Edim +1
# (X) = 1 if n > 3.
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3. Wedge of two Moore spaces

In this section we completely determine the group E#
dim +r(X) for X =

M(Zq, n + 1) ∨M(Zq, n), n ≥ 5.
From now on, we let M1 = M(Zq, n + 1) = Sn+1 ∪q en+2 and M2 =

M(Zq, n) = Sn ∪q en+1, q > 1 . And we let f ∈ [X, X] and use the no-
tation of Section 2 so that fjk = pjfik ∈ [Mk,Mj ] for j, k = 1, 2. Then
f ∈ E(X) ⇔ f∗n, f∗n+1 are isomorphisms. By Proposition 2.2, we can identify
f ∈ E(X) with the 2× 2 matrix

θ(f) =
(

f11 f12

f21 f22

)
,

where f11 ∈ E(M1), f12 ∈ [M2,M1], f21 ∈ [M1, M2], f22 ∈ E(M2). The group
structure in E(X) is then given by matrix multiplication.

Lemma 3.1. Let f ∈ [X, X] be given by f =
(

f11 f12
f21 f22

)
. Then

f ∈ E(X) ⇔ f11 ∈ E(M1) and f22 ∈ E(M2).

Proof. f ∈ E(X) ⇔ f∗n, f∗n+1 are isomorphisms ⇔ f22∗n, f11∗n+1 are isomor-
phisms ⇔ f11 ∈ E(M1), f22 ∈ E(M2). ¤

Lemma 3.2. πn+k(M1 ∨M2) ≈ πn+k(M1)⊕ πn+k(M2) for k = 0, 1, 2, 3.

Proof. The Moore spaces M1 and M2 are n-connected and (n− 1)-connected,
respectively and n ≥ 5. By Proposition 2.1, [Sn+k,M1 ∨M2] ≈ [Sn+k,M1] ⊕
[Sn+k, M2] for k < n. ¤

From Lemma 3.2, it is clear that

f#n+k(x, y) =
(

f11#n+k f12#n+k

f21#n+k f22#n+k

)(
x
y

)
,

∀x ∈ πn+k(M1), ∀y ∈ πn+k(M2), k = 0, 1, 2, 3.

Lemma 3.3. Let f ∈ Edim
# (X) be given by f =

(
f11 f12
f21 f22

)
. Then f22 = 1.

Proof. By Lemma 3.2 and Proposition 2.2, f22 ∈ Edim X
# (M2). We know that

dim X = n + 2 and dim M2 = n + 1. So f22 = 1 from Theorem 2.5(2). ¤

From now on, it suffices that we consider just f11, f12, f21.

Theorem 3.4. For the space X = M1 ∨M2,

E#
dim(X) ≈





Zq, if q : odd
Z2 ⊕ Z2, if q ≡ 2 (mod 4)

Z2 ⊕ Z2 ⊕ Z2, if q ≡ 0 (mod 4).
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Proof. By Proposition 2.2, [X, X] ≈ [M1,M1]⊕[M1,M2]⊕[M2, M1]⊕[M2,M2].

First, in the case q is odd: Since [M1,M2] ≈ 0, f21 = 0. By Theorem 2.5(1),
En+2
# (M1) = 1. So f11 = 1. Since πn+1(M(Zq, n)) ≈ 0, πn+2(M(Zq, n)) ≈ 0,

and πn(M(Zq, n + 1)) ≈ 0, f12#k = 0 for all k ≤ n + 2. So
(

1 f12
0 1

)
belongs to

E#
dim(X) for any f in [M2, M1]. By Proposition 2.4, [M2,M1] ≈ Zq = 〈iπ〉.

Therefore

E#
dim(X) ≈

{(
1 f12

0 1

)
|f12 ∈ 〈iπ〉

}
.

Therefore E#
dim(X) ≈ Zq.

Second, in the case q ≡ 2 (mod 4): By Proposition 2.4, [M1,M1] ≈ Z2q =
〈1〉. We know that πn+1(M1) ≈ Zq = 〈i〉 and πn+2(M1) ≈ Z2 = 〈iη〉, where
i : Sn+1 ↪→ M1 is inclusion and η is the generator of πn+2(Sn+1). Let π : M1 →
Sn+2 be the map shrinking Sn+1 to the base point of Sn+2. Then πi : Sn+1 →
Sn+2 is trivial. So (iηπ)#n+1(i) = iηπi = 0 and (iηπ)#n+2(iη) = iηπiη = 0.
Thus

(
1+iηπ 0

0 1

)
belongs to E#

dim(X). By Theorem 2.5(1), E#
dim(M1) ≈ Z2.

So f11 ∈ 1 + 〈iηπ〉.
When q is even, there exist elements η ∈ [M2, S

n−1] and η̃ ∈ [Sn+2, M2] such
that ηi = η and πη̃ = η. Consider [M2,M1] ≈ Zq = 〈iπ〉 and πn+2(M2) ≈ Z4 =
〈η̃〉. Since (iπ)#n+2(η̃) = iπη̃ = iη 6= 0, ( 1 iπ

0 1 ) does not belong to E#
dim(X).

So if f ∈ Edim
# (X), then f12 = 0.

Now let us consider f21. For even q, we use the following notations η1 =
iη and η2 = η̃π. Then [M1,M2] ≈ Z2 ⊕ Z2 = 〈η1〉 ⊕ 〈η2〉. We know that
πn+1(M1) ≈ Z2 = 〈i〉. η1#n+1(i) = η1i = iηi = iη 6= 0. Hence

(
1 0
η1 1

)
does

not belong to E#
dim(X). On the other hand η2#n+1(i) = η2i = η̃πi = 0 and

η2#n+2(iη) = η2iη = η̃πiη = 0. So
(

1 0
η2 1

)
belongs to E#

dim(X). Thus we
conclude the following results.

E#
dim(X) ≈

{(
1 + ε 0
f21 1

)
|ε ∈ 〈iηπ〉, ε2 = 1 and f21 ∈ 〈η2〉, η2

2 = 1
}

.

Therefore E#
dim(X) ≈ Z2 ⊕ Z2.

Last, in the case q ≡ 0 (mod 4): By Proposition 2.4, [M1, M1] ≈ Zq ⊕ Z2 =
〈1〉 ⊕ 〈iηπ〉. By the same manner in case q ≡ 2 (mod 4),

(
1+iηπ 0

0 1

)
belongs to

E#
dim(X).
And [M1,M2] ≈ Z2 ⊕ Z2 ⊕ Z2 = 〈η1〉 ⊕ 〈η2〉 ⊕ 〈iη2π〉. Since η1#n+2(iη) =

η1iη = iηiη = iη2 6= 0,
(

1 0
η1 1

)
does not belong to E#

dim(X). However
η2#n+1(i) = η2i = η̃πi = 0, η2#n+2(iη) = η2iη = η̃πiη = 0, (iη2π)#n+2(i) = 0

and (iη2π)2#n+2(iη) = 0. So
(

1 0
η2 1

)
and

(
1 0

iη2π 1

)
belong to E#

dim +1(X).

Now [M2, M1] ≈ Z2 = 〈iπ〉 and πn+2(M2) ≈ Z2 ⊕ Z2 = 〈η̃〉 ⊕ 〈iη2〉. Since
(iπ)#n+2(η̃) = iπη̃ = iη 6= 0, ( 1 iπ

0 1 ) does not belong to E#
dim(X). Thus we



116 MYUNG HWA JEONG

conclude the following results.

E#
dim(X) ≈

{(
1 + ε 0
f21 1

)
|f21 ∈ 〈η2〉 ⊕ 〈iη2π〉, η2

2 = 1, (iη2π)2 = 1
}

.

Therefore E#
dim(X) ≈ Z2 ⊕ Z2 ⊕ Z2. ¤

Theorem 3.5. For the space X = M1 ∨M2, n ≥ 5,

E#
dim +1(X) ≈




Zq, if q : odd
1, if q ≡ 2 (mod 4)
1, if q ≡ 0 (mod 4).

Proof. First, in the case q is odd: Since E#
dim +1(X) ⊆ E#

dim(X), it suffices to
consider [M2,M1] ≈ Zq = 〈iπ〉. We know that πn+3(M2) ≈ Z(q,24) = 〈iν〉. And
iπ#n+3(iν) = iπiν = 0. Therefore E#

dim +1(X) ∼= Zq. That is E#
dim +1(X) =

E#
dim(X).
Second, in the case q ≡ 2 (mod 4): By Theorem 2.5, E#

dim +1(M1) = 1.
Hence, it suffices to consider only η2. πn+3(M1) ≈ Z4 = 〈η̃〉, and (η2)#n+3(η̃) =
η2η̃ = η̃πη̃ = η̃η 6= 0. Therefore

(
1 0
η2 1

)
does not belong to E#

dim +1(X). Thus
we can conclude E#

dim +1(X) = 1.
Last, in the case q ≡ 0 (mod 4): It suffices to consider just two genera-

tors η2, iη2π. πn+3(M1) ≈ Z2 ⊕ Z2 = 〈η̃〉 ⊕ 〈iη2〉. Like the second case,
(η2)#n+3(η̃) 6= 0 and (iη2π)#n+3(η̃) = iη2πη = iη3 6= 0. Finally, we obtain the
result E#

dim +1(X) = 1. ¤

We denote by Z(X) the subset of [X, X] consisting of all homotopy classes
which induces the trivial homomorphism on homotopy groups in dimensions
less than or equal to dim X. Consider the bijection map T : E#

dim(X) → Z(X)
defined by the translation by the identity map, that is, T (f) = f − 1.

Corollary 3.6. For the space X = M1 ∨M2,
(1) if q : odd, then

Z(X) ≈
{(

0 0
f21 0

)
|f21 ∈ 〈iπ〉, (iπ)q = 1

}
,

(2) if q ≡ 2 (mod 4), then

Z(X) ≈
{(

f11 0
f21 0

)
|f11 ∈ 〈iηπ〉, f21 ∈ 〈η2 〉, (iηπ)2 = 1, η2

2 = 1
}

,

and
(3) if q ≡ 0 (mod 4), then

Z(X) ≈
{(

f11 0
f21 0

)
|f11 ∈ 〈iηπ〉, f21 ∈ 〈η2〉 ⊕ 〈iη2π〉, (iη2π)2 = 1

}
.
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