Bull. Korean Math. Soc. 41 (2004), No. 3, pp. 393-401

POSTNIKOV SECTIONS AND GROUPS OF
SELF PAIR HOMOTOPY EQUIVALENCES

KEE YOUNG LEE

ABSTRACT. In this paper, we apply the concept of the group £(X,
A) of self pair homotopy equivalences of a CW-pair (X, A) to the
Postnikov system. By using a short exact sequence related to the
group of self pair homotopy equivalences, we obtain the following
result: for any Postnikov section X, of a CW-complex X, the group
E(Xn, X) of self pair homotopy equivalences on the pair (Xn, X) is
isomorphic to the group £(X) of self homotopy equivalences on X.
As a corollary, we have, £(K (7, n), M(m,n)) = E(M(m, n)) for each
n > 1, where K(m,n) is an Eilenberg-Mclane space and M(m,n) is
a Moore space.

1. Introduction

If X is a based topological space, let £(X ) denote the set of homotopy
classes of self homotopy equivalences of X. Then £(X) is a group with
group operation given by the composition of homotopy classes. The
group £(X) is a fundamental object in the homotopy theory and has
been studied extensively by several authors; for instances, M. Arkowitz
(1], K. Maruyama [6], J. Rutter [7], N. Sawashita [8] and A. Sieradski
[9], et al..

Let £(X, A) denote the set of pair homotopy classes of self pair homo-
topy equivalences of a CW-pair (X, A). Then it is a group, a homotopy
invariant and this concept is a generalization of that of the group £(Y')
for a CW-complex Y. Moreover, for a CW-pair (X, A), there exists a
exact sequence

(1) 1—>8(X,A;idA)——>5(X,A)—>5(A),
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where £(X, A;id4) is the subgroup of £(X, A) which consists of the pair
homotopy classes of the self pair homotopy equivalences such that the
restriction to A is the identity on A ([5]). In this paper, we show that for
a pair (X, X), the sequence (1) becomes a split short exact sequence,
where X,, be the n-th Postnikov section of a CW-complex X. We also
show that £(X,,X;idx) is trivial. By the exactness, we obtain the
following main results:

THEOREM. Let X be a CW-complex and {X,} the Postnikov system
of X. Then for any section X,, the group £(Xy,,X) is isomorphic to
E(X).

CoROLLARY. For each n > 1, £(K(m,n), M(m,n)) is isomorphic to
E(M(m,n)), where K (m,n) is an Eilenberg-Mclane space and M (m,n) is
a Moore space.

2. The groups of self pair homotopy equivalences and certain
exact sequences

In this section, we will introduce some definitions and some theorems
in [5] with brief proofs, which are needed to develop our assertion.

In the category of pairs, the “objects” are maps (Xi,*) — (Xa2,%)
and “morphism” from o : X7 — X9 to 8: Y7 — Y5 is a pair of maps
(f1, f2) such that the diagram

X, 2 X,
fil 1 fe
Y1 ;) Y2

is commutative, i.e., 8f1 = foa. A homotopy of (f1, f2) is just a pair
of homotopies ( fit, fot) such that 8fi; = fosa. This category reduces to
the category of ordinary pairs of spaces (with base point) if we restrict
ourselves to maps a which are inclusions. If (fi, f2) is homotopic to
(91, 92) by the homotopy (fit, fat), we denote by

(f1t, fat) : (f1, f2) = (g1, g2)-

We denote by [f1, f2] the homotopy class of the morphism (f1, f2) :
o — [ and by II{a,3) the set of all homotopy classes from « to 3.
(f1, f2) is called a homotopy equivalent morphism, or simply a homotopy
equivalence if there is a morphism (g1, g2) such that (g1, g2) o (f1, f2) =~
(idx,,idx,) and (f1, f2) o (91,92) =~ (idy,, idy; ). Such morphism (g, g2)
is called a homotopy inverse of (fi, f2). Furthermore, (f1, f2) is called



Postnikov sections and groups 395

a self homotopy equivalent morphism, or simply a self homotopy equiva-
lence if o = 3 and a self pair homotopy equivalent morphism, or simply
a self pair homotopy equivalence if « = 3 =1i: A — X is the inclusion.

DEFINITION 2.1. For a given object «, we define the subset £(a) of
II(e, ) by

E(a) = {[f1, f2] € U(e, @) | (f1, f2)is a homotopy equivalence}.
Especially, for a CW-pair (X, A), if a =4 : A — X is the inclusion, we
denote £(i) by £(X, A). If (f1, f2) is a morphism from the inclusion %
to itself, then f1]4 = fo. Thus we can consider the morphism (fi, fa2)
as the pair map f1 : (X, A) — (X, A). So the group £(X, A) is just the
group of pair homotopy equivalences, i.e.,

EX,A) ={[fllf : (X, A) — (X, A)is a pair homotopy equivalence}.
We also define the subset £(X, A;id4) by
E(X, Ayida) = {[ida, f] € £(X, A) | id4 is the identity on A}.

These sets are all groups, homotopy invariants in the category of pairs
and generalizations of several concepts of the group of self homotopy
equivalences.

THEOREM 2.2. Let o : X1 — X5 be an object in the category of pairs.
Then the set £(a) has a group structure induced by the composition of
morphisms.

Proof. Let [f1, f2] and [g1, g2] be elements of £(c). Then
[f1, fo] o [91, 92] = [f191, faga] € E(a),

since (f191, f2g2) is a self homotopy equivalent morphism on «. For each
[f1, f2] € E(a), let (A1, hs) be a homotopy inverse morphism of (fi, f2).
Then [h1, ko] is the inverse element of [f1, fo]. Moreover, [idx,,idx,] is
the identity element of £(a). U

THEOREM 2.3. If o and (3 have same homotopy type, then (o) and
E(B) are isomorphic.

Proof. Suppose that « : X1 — X5 and §: Y7 — Y5 have the same
homotopy type by a homotopy equivalent morphism (ej,e9) : @ — (3
with the homotopy inverse morphism (€},e}) : 3 — a. Define ¥ :

E(a) — E(B) by
Olf1, fo] = [(e1, e2) © (f1, f2) © (€], €3)].

Then V¥ is an isomorphism. O
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REMARK. Let X be a CW-complex and a : * — X the constant
map. Then we have £(a) = £(X). Similarly, if oo : X — * is a constant
map, then we have £(a) = £(X). Moreover, for the identity map idx :
X — X, we have £(idx) = £(X).

Now we fit three groups £(X, A;id4), £(X, A) and E(A) together into
an exact sequence.

THEOREM 2.4. For a CW-pair (X, A), there exists an exact sequence
as follows:

2) 1 — E(X, Asida) — E(X, A) — E(A).

Proof. Let ® : £(X, A;idy) — £(X, A) be the inclusion. Then it is
trivial that ® is a monomorphism. Define ¥ : £(X, A) — £(A) by

Ulf1, f2] = [fi]
for [f1, f2] € £(X, A). Then ¥ is well-defined. Let [f1, f2] = [g1,92] €
E(X, A). Then there exists a homotopy (F|a, F) : ¢ X idr — 4 such that
(Fla, F) : (f1, f2) ~ (91,92), where i : A — X is the inclusion and idy is
the identity on the unit interval [0,1] . Since F|a : f1 =~ g1, we have

Y(f1, fol = [fil =[] = ¥[g1, g2]-

Furthermore, ¥ is a homomorphism, since the group operations of £(X,
A) and E£(A) are induced by the composition of maps.

Now we show the exactness at £(X, A). The image of ® is contained
in the kernel of ¥, since

Wefids, f] = Vlida, f] = [ida] € E(A).

Thus it remains for us to show that the kernel of ¥ is contained in
the image of ®. That is, each element [f1, fo] € £(X, A) such that
[fi] = [ida] € E(A) belongs to £(X, A;ids). Let [f1, f2] be such an
element. Since f; ~ id4 relative to * in A, there exists a homotopy
H: AxI— Asuch that H(a,0) = fi(a), H(a,1) = a and H(x,t) = *.
Then the map foUH : X x OUAX I — X defined by (faU H)|xxo = fa
and (follH)|axs = iH has an extension F : XxI — X. Let f = F(-, 1).
Then, for each a € A, we have

f(a) = F(a,1) = H(a,1) = a.

So (ida, f) is a morphism from i to itself, where ¢ : A — X is the
inclusion . But (f1, f2) is homotopic to (ida, f) by the homotopy (H, F)
in the category of pairs. Therefore, [f1, f2] = [ida, f] € £(X, A;ida). O

DEFINITION 2.5. The CW-pair (X, A) is called the self-homotopy
equivalence extendable pair if for every homotopy equivalence f : A — A,
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there exists a homotopy equivalence f : X — X such that (f, f) : i — i
is a self homotopy equivalent morphism in the category of pairs, where i :
A — X is the inclusion. In this case, f is called a homotopy equivalence
extension of f.

The following proposition gives a homotopical property of homotopy
equivalence extensions.

PROPOSITION 2.6. Let (X, A) be a homotopy equivalence extendable
pair, and f and g self homotopy equivalences on A. If f and g are
homotopic relative to %, then there are homotopy equivalence extensions
f and g of f and g respectively such that (f, f) and (g,5) are homotopic
in the category of pairs.

Proof. Let H : Ax I — A be a homotopy between f and g. Then we
have H(a,0) = f(a), H(a,1) = g(a) and H(*,t) = *. Since (X, A4) is a
homotopy equivalence extendable pair, there exists a homotopy equiva-
lence extension f : X — X of f. Define fUiH : X xOUAXI — X
by (fUiH)|xxo = f and (f UiH)|ax; = iH, where i : A — X is the
inclusion. Then it is well-defined, since f(a) = f(a) = H(a,0), for each
a € A. Since the inclusion i : A — X is a cofibration, the map (f U H)
has an extension H : X x I — X. Define g: X — X by g(z) = H(z,1).
Then g(a) = H(a,1) = H(a,1) = g(a). So (g,7) is a morphism. Since §
is homotopic to f by the homotopy H, § is a self homotopy equivalence.
Furthermore, we have (H, H) : (f, f) ~ (g,9), since Hoi = 30 H, where
i: A — X is the inclusion. Therefore, g is a homotopy equivalence
extension of g. U

3. Proof of the main theorem

Let X be a CW-complex, X, be the n-th Postnikov section of X and
in + X — X, the inclusion. It is a well-known fact that X,, can be
obtained by attaching (i 4+ 1)-cells (i > n) to X, so that X,, kills the
homotopy groups m;(X) for ¢ > n. Thus for every n > 1, X, has the
following properties:

(a) (Xn, X) is a relative CW-complex with cells in dimensions > n+2;

(b) m(Xy,) =01if i >mn;

(c) i, : 7i(Xpn) — m(X) is an isomorphism if ¢ < n.

Now we introduce the following proposition needed in this section.

ProprosITION 3.1. ([3], p131) Suppose S is a set of integers and
(Y, X) is a relative CW-complex such that if e, CY — X is a cell, dim
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ea € S. Suppose that m;_1(Z,*) = 0 for any ¢ € S. Then any map
f: X — Z admits an extension f : Y — Z:

Y
it NS
X — Z

f

PropPOSITION 3.2. For each Postnikov section X, n > 1, the CW-
pair (X,, X) is a homotopy equivalence extendable pair.

Proof. Let f: X — X be a self map. Consider the map i, f : X —
X,,. Since X,, — X has cells in dir_nensions >n+2 and m41(X,) =0 for
any @ > n, i, f has an extension f: X,, — X, by the Proposition 3.1:

x, 4 x,
in 1 Tin
X ? X

Thus (f, f) : in — in is a morphism in the category of pairs. Let us
show that f is a self homotopy equivalence. Since f is a self homotopy
equivalence, there exists a homotopy inverse g and a homotopy H :
X x I — X such that H(z,0) = (fog)(z), H(z,1) =  and H(x,t) = *.
Let g be an extension of g constructed in the above manner. Define a
map

fogUinHUidx, : X, x 0UX x TUX, x1— X,

by fogUinH Uidy, |x,x0=f 07, fogUinH Uidx,|xxs = inH and
fogUinHUidy, |x,x1 = idx,. Since Xp x I —(X, x0UX xITUX, x1)
has cells of the form €, x e!, where e, C X,,— X and ¢! = I—{0,1}. But
Xp—X has cells in dimensions > n+2. So X" xI—(X, x0UX xILX,x1)
has cells in dimensions > n + 3. Since 7;(X,) = 0 for ¢ > n, the map
fogUinH Uidx, has an extension H : X, x I — X, by Proposition
3.1. The extension H is a homotopy between f o g and idx, relative to
* in X,,. Similarly, g o f is homotopic to idx, relative to * in X,,.
Thus g is a homotopy inverse of f and f is an equivalence extension
of f. |

REMARK 3.3. In the proof of the above proposition, we have _ﬁ(in_g
idr) = inH since H is an extension of i, H. This means that (H, H)

is a homotopy between (f, f) o (9,9) and (idx, idx, ) in the category of

pairs. So we have [f, f] € £(Xn, X).
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THEOREM 3.4. Let X, be the n-th Postnikov section of X for each
n > 1. Then we have the following split short exact sequence:

(3) 1 — E(Xn, X;idx) 2> (X, X) 5 E(X) — 1.

where ® is the inclusion and ¥ is a homomorphism defined by U[f, f] =
[f].

Proof. By Theorem 2.4, we have the following exact sequence;
(4) 1= E(Xn, X;idx) = £(Xn, X) 5 £(X).

Thus it is sufficient to show that there is a homomorphism J : £(X) —
E(Xn, X) such that ¥ o J = idgx). Let [f] be an element in £(X).
Then there is a homotopy equivalence extension f of f by Proposition
3.2. Define J : £(X) — E(Xn, X) by J[f] = [f, fl.

Let us show that J is well-defined. By Proposition 2.6 and Remark
3.3, it is sufficient to show that if fy and f; are any two homotopy
equivalence extensions of f, then (f, fo) and (f, fi) are homotopic in
the category of pairs. Define a map

folinfUfl : Xy x0UX XxTUX,x1—X,

by follin fUf1]x,x0 = fo, folinfUfi|xx1 = inf and follin fUf1]x,x1 =
f1, where iy, is the inclusion from X to X,,. By Theorem 3.1, foUi,fU f1
has an extension H : X,, x I — X,,. Since H(i, x id;) = inf, the pair
map (f, H) is a homotopy between (f, fo) and (f, f1) in the category of
pairs.

Moreover, ¥ o J = idg(x) by definitions of ¥ and J.

Let us show that J is a homomorphism. Let [f] and [g] be elements
in £(X). Since

J(Uf]-lg) =J[fogl=1[fog,fog
and
J[f] ’ J[g] = [faf] ’ [gvg] = [fog)foy]v

we have to show that (f o g, f o g) is homotopic to (f o g, f 0 g) in the
category of pairs. Let H : X x I — X be the map given by H(z,t) =
flg(z)) for (z,t) € X x I. Define a map

fogUinHUfog: X, x0UX xITUX,x1— X,

by (fogUinH Ufog)lx,xo= fog, (fogUinH U fog)|xxr =inH
and (fog Ui H U fog)lx,x1 = fog. By Proposition 3.1, the map
f o gUi, HU fog has an extension H : X, xI — X,,. Since H (i, xidf) =
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inH, the pair (H, H) is a homotopy between (fog, f o g) and (fog, fog)
in the category of pairs. O

THEOREM 3.5. Let X, be the n-th Postnikov section for n > 1.
Then £(Xy, X) is isomorphic to £(X).

Proof. By Theorem 3.4, it is sufficient to show that £(Xn, X;idx) is
trivial. Let us show that £(X,, X;idx) = {|idx, idx,]|}. Let [idx, f) be
an element in £(X,, X;idx) and H : X x I — X be the map given by

H(z,t) =z for (x,t) € X x I. Define
H X, x0UXxITUuX,x1—X,

by H'|x,x0 = f, H |xx1 = inH and H'|x,x1 = idx, - By Proposition
3.1, H' has an extension H:X,xI— X,. Sowehave H(x,0) = f,
H(x_,_l) =1idx,, H(x,t) = x and F(znf tdr) = inH. Therefore, the pair
(H,H) is a homotopy between (idx, f) and (idx,idx,). This implies
lidx, f] = [tdx,idx,,]. 0

The Eilenberg-Maclane space K (m,n) can be obtained from the Moo-

re space M (w,n) by killing homotopy groups of order > n + 1. That is,
k(m,n) = M(m,n),. Thus we have following corollary:

COROLLARY 3.6. For each n > 1, &(K(m,n), M(m,n)) is isomorphic
to E(M(m,n)).

We know that £(K(m,n)) = Aut(m), where Aut(w) is the group of
automorphisms on 7 [1]. Moreover, it is a well known fact that if a
group 7 is non abelian, then Aut(r) is not trivial. Thus for such group
7, E(K(m,n)) is not trivial. But £(K(m,n), M(7,n);idpr(x,n)) is always
trivial by Theorem 3.4. So £(X,,, X;idx) is not isomorphic to £(X,) in
general.

EXAMPLE 3.7. It is well-known facts that E(RP™) = Zy = £(S™)
[1]. Since RP? = M(Z3,1), RP® = K(Z,1), CP® = K(Z5,2) and
5% = M(Zs2,2), we have

E(RP™,RP?) = E(RP?) = Z,
and
E(CP™, 5% = £(S?%) = Z,.
More generally, since S™ = M(Z,n), we have
E(K(Z,n),M(Z,n)) = £E(K(Z,n),S™)) = E(S™)) = Z,.
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