POSTNIKOV SECTIONS AND GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

KEE YOUNG LEE

ABSTRACT. In this paper, we apply the concept of the group $\mathcal{E}(X,A)$ of self pair homotopy equivalences of a CW-pair (X,A) to the Postnikov system. By using a short exact sequence related to the group of self pair homotopy equivalences, we obtain the following result: for any Postnikov section X_n of a CW-complex X, the group $\mathcal{E}(X_n,X)$ of self pair homotopy equivalences on the pair (X_n,X) is isomorphic to the group $\mathcal{E}(X)$ of self homotopy equivalences on X. As a corollary, we have, $\mathcal{E}(K(\pi,n),M(\pi,n))\equiv \mathcal{E}(M(\pi,n))$ for each $n\geq 1$, where $K(\pi,n)$ is an Eilenberg-Mclane space and $M(\pi,n)$ is a Moore space.

1. Introduction

If X is a based topological space, let $\mathcal{E}(X)$ denote the set of homotopy classes of self homotopy equivalences of X. Then $\mathcal{E}(X)$ is a group with group operation given by the composition of homotopy classes. The group $\mathcal{E}(X)$ is a fundamental object in the homotopy theory and has been studied extensively by several authors; for instances, M. Arkowitz [1], K. Maruyama [6], J. Rutter [7], N. Sawashita [8] and A. Sieradski [9], et al..

Let $\mathcal{E}(X,A)$ denote the set of pair homotopy classes of self pair homotopy equivalences of a CW-pair (X,A). Then it is a group, a homotopy invariant and this concept is a generalization of that of the group $\mathcal{E}(Y)$ for a CW-complex Y. Moreover, for a CW-pair (X,A), there exists a exact sequence

$$(1) 1 \to \mathcal{E}(X, A; id_A) \to \mathcal{E}(X, A) \to \mathcal{E}(A),$$

Supported by a Korea University Grant.

Received January 27, 2004.

²⁰⁰⁰ Mathematics Subject Classification: Primary 55P10; Secondary 55P30, 55P20.

Key words and phrases: self homotopy equivalence, self pair homotopy equivalence, Postnikov section.

where $\mathcal{E}(X, A; id_A)$ is the subgroup of $\mathcal{E}(X, A)$ which consists of the pair homotopy classes of the self pair homotopy equivalences such that the restriction to A is the identity on A ([5]). In this paper, we show that for a pair (X_n, X) , the sequence (1) becomes a split short exact sequence, where X_n be the n-th Postnikov section of a CW-complex X. We also show that $\mathcal{E}(X_n, X; id_X)$ is trivial. By the exactness, we obtain the following main results:

THEOREM. Let X be a CW-complex and $\{X_n\}$ the Postnikov system of X. Then for any section X_n , the group $\mathcal{E}(X_n, X)$ is isomorphic to $\mathcal{E}(X)$.

COROLLARY. For each $n \geq 1$, $\mathcal{E}(K(\pi, n), M(\pi, n))$ is isomorphic to $\mathcal{E}(M(\pi, n))$, where $K(\pi, n)$ is an Eilenberg-Mclane space and $M(\pi, n)$ is a Moore space.

2. The groups of self pair homotopy equivalences and certain exact sequences

In this section, we will introduce some definitions and some theorems in [5] with brief proofs, which are needed to develop our assertion.

In the category of pairs, the "objects" are maps $(X_1,*) \to (X_2,*)$ and "morphism" from $\alpha: X_1 \to X_2$ to $\beta: Y_1 \to Y_2$ is a pair of maps (f_1, f_2) such that the diagram

$$\begin{array}{ccc} X_1 & \xrightarrow{\alpha} & X_2 \\ f_1 \downarrow & & \downarrow f_2 \\ Y_1 & \xrightarrow{\beta} & Y_2 \end{array}$$

is commutative, i.e., $\beta f_1 = f_2 \alpha$. A homotopy of (f_1, f_2) is just a pair of homotopies (f_{1t}, f_{2t}) such that $\beta f_{1t} = f_{2t} \alpha$. This category reduces to the category of ordinary pairs of spaces (with base point) if we restrict ourselves to maps α which are inclusions. If (f_1, f_2) is homotopic to (g_1, g_2) by the homotopy (f_{1t}, f_{2t}) , we denote by

$$(f_{1t}, f_{2t}): (f_1, f_2) \simeq (g_1, g_2).$$

We denote by $[f_1, f_2]$ the homotopy class of the morphism (f_1, f_2) : $\alpha \to \beta$ and by $\Pi(\alpha, \beta)$ the set of all homotopy classes from α to β . (f_1, f_2) is called a homotopy equivalent morphism, or simply a homotopy equivalence if there is a morphism (g_1, g_2) such that $(g_1, g_2) \circ (f_1, f_2) \simeq (id_{X_1}, id_{X_2})$ and $(f_1, f_2) \circ (g_1, g_2) \simeq (id_{Y_1}, id_{Y_2})$. Such morphism (g_1, g_2) is called a homotopy inverse of (f_1, f_2) . Furthermore, (f_1, f_2) is called

a self homotopy equivalent morphism, or simply a self homotopy equivalence if $\alpha = \beta$ and a self pair homotopy equivalent morphism, or simply a self pair homotopy equivalence if $\alpha = \beta = i : A \to X$ is the inclusion.

DEFINITION 2.1. For a given object α , we define the subset $\mathcal{E}(\alpha)$ of $\Pi(\alpha, \alpha)$ by

$$\mathcal{E}(\alpha) = \{ [f_1, f_2] \in \Pi(\alpha, \alpha) \mid (f_1, f_2) \text{ is a homotopy equivalence} \}.$$

Especially, for a CW-pair (X, A), if $\alpha = i : A \to X$ is the inclusion, we denote $\mathcal{E}(i)$ by $\mathcal{E}(X, A)$. If (f_1, f_2) is a morphism from the inclusion i to itself, then $f_1|_A = f_2$. Thus we can consider the morphism (f_1, f_2) as the pair map $f_1 : (X, A) \to (X, A)$. So the group $\mathcal{E}(X, A)$ is just the group of pair homotopy equivalences, i.e.,

$$\mathcal{E}(X,A) = \{[f]|f:(X,A) \to (X,A) \text{ is a pair homotopy equivalence}\}.$$

We also define the subset $\mathcal{E}(X, A; id_A)$ by

$$\mathcal{E}(X, A; id_A) = \{ [id_A, f] \in \mathcal{E}(X, A) \mid id_A \text{ is the identity on A} \}.$$

These sets are all groups, homotopy invariants in the category of pairs and generalizations of several concepts of the group of self homotopy equivalences.

THEOREM 2.2. Let $\alpha: X_1 \to X_2$ be an object in the category of pairs. Then the set $\mathcal{E}(\alpha)$ has a group structure induced by the composition of morphisms.

Proof. Let
$$[f_1, f_2]$$
 and $[g_1, g_2]$ be elements of $\mathcal{E}(\alpha)$. Then

$$[f_1, f_2] \circ [g_1, g_2] = [f_1g_1, f_2g_2] \in \mathcal{E}(\alpha),$$

since (f_1g_1, f_2g_2) is a self homotopy equivalent morphism on α . For each $[f_1, f_2] \in \mathcal{E}(\alpha)$, let (h_1, h_2) be a homotopy inverse morphism of (f_1, f_2) . Then $[h_1, h_2]$ is the inverse element of $[f_1, f_2]$. Moreover, $[id_{X_1}, id_{X_2}]$ is the identity element of $\mathcal{E}(\alpha)$.

THEOREM 2.3. If α and β have same homotopy type, then $\mathcal{E}(\alpha)$ and $\mathcal{E}(\beta)$ are isomorphic.

Proof. Suppose that $\alpha: X_1 \to X_2$ and $\beta: Y_1 \to Y_2$ have the same homotopy type by a homotopy equivalent morphism $(e_1, e_2): \alpha \to \beta$ with the homotopy inverse morphism $(e'_1, e'_2): \beta \to \alpha$. Define $\Psi: \mathcal{E}(\alpha) \to \mathcal{E}(\beta)$ by

$$\Psi[f_1, f_2] = [(e_1, e_2) \circ (f_1, f_2) \circ (e_1', e_2')].$$

Then Ψ is an isomorphism.

REMARK. Let X be a CW-complex and $\alpha: * \to X$ the constant map. Then we have $\mathcal{E}(\alpha) = \mathcal{E}(X)$. Similarly, if $\alpha: X \to *$ is a constant map, then we have $\mathcal{E}(\alpha) = \mathcal{E}(X)$. Moreover, for the identity map $id_X: X \to X$, we have $\mathcal{E}(id_X) = \mathcal{E}(X)$.

Now we fit three groups $\mathcal{E}(X,A;id_A)$, $\mathcal{E}(X,A)$ and $\mathcal{E}(A)$ together into an exact sequence.

THEOREM 2.4. For a CW-pair (X, A), there exists an exact sequence as follows:

(2)
$$1 \to \mathcal{E}(X, A; id_A) \to \mathcal{E}(X, A) \to \mathcal{E}(A).$$

Proof. Let $\Phi: \mathcal{E}(X,A;id_A) \to \mathcal{E}(X,A)$ be the inclusion. Then it is trivial that Φ is a monomorphism. Define $\Psi: \mathcal{E}(X,A) \to \mathcal{E}(A)$ by

$$\Psi[f_1, f_2] = [f_1]$$

for $[f_1, f_2] \in \mathcal{E}(X, A)$. Then Ψ is well-defined. Let $[f_1, f_2] = [g_1, g_2] \in \mathcal{E}(X, A)$. Then there exists a homotopy $(F|_A, F) : i \times id_I \to i$ such that $(F|_A, F) : (f_1, f_2) \simeq (g_1, g_2)$, where $i : A \to X$ is the inclusion and id_I is the identity on the unit interval [0, 1]. Since $F|_A : f_1 \simeq g_1$, we have

$$\Psi[f_1, f_2] = [f_1] = [g_1] = \Psi[g_1, g_2].$$

Furthermore, Ψ is a homomorphism, since the group operations of $\mathcal{E}(X, A)$ and $\mathcal{E}(A)$ are induced by the composition of maps.

Now we show the exactness at $\mathcal{E}(X, A)$. The image of Φ is contained in the kernel of Ψ , since

$$\Psi\Phi[id_A, f] = \Psi[id_A, f] = [id_A] \in \mathcal{E}(A).$$

Thus it remains for us to show that the kernel of Ψ is contained in the image of Φ . That is, each element $[f_1,f_2]\in \mathcal{E}(X,A)$ such that $[f_1]=[id_A]\in \mathcal{E}(A)$ belongs to $\mathcal{E}(X,A;id_A)$. Let $[f_1,f_2]$ be such an element. Since $f_1\simeq id_A$ relative to * in A, there exists a homotopy $H:A\times I\to A$ such that $H(a,0)=f_1(a), H(a,1)=a$ and H(*,t)=*. Then the map $f_2\sqcup H:X\times 0\sqcup A\times I\to X$ defined by $(f_2\sqcup H)|_{X\times 0}=f_2$ and $(f_2\sqcup H)|_{A\times I}=iH$ has an extension $F:X\times I\to X$. Let $\overline{f}=F(\cdot,1)$. Then, for each $a\in A$, we have

$$\overline{f}(a) = F(a, 1) = H(a, 1) = a.$$

So (id_A, \overline{f}) is a morphism from i to itself, where $i: A \to X$ is the inclusion. But (f_1, f_2) is homotopic to (id_A, \overline{f}) by the homotopy (H, F) in the category of pairs. Therefore, $[f_1, f_2] = [id_A, \overline{f}] \in \mathcal{E}(X, A; id_A)$. \square

DEFINITION 2.5. The CW-pair (X, A) is called the self-homotopy equivalence extendable pair if for every homotopy equivalence $f: A \to A$,

there exists a homotopy equivalence $\overline{f}: X \to X$ such that $(f, \overline{f}): i \to i$ is a self homotopy equivalent morphism in the category of pairs, where $i: A \to X$ is the inclusion. In this case, \overline{f} is called a homotopy equivalence extension of f.

The following proposition gives a homotopical property of homotopy equivalence extensions.

PROPOSITION 2.6. Let (X, A) be a homotopy equivalence extendable pair, and f and g self homotopy equivalences on A. If f and g are homotopic relative to *, then there are homotopy equivalence extensions \overline{f} and \overline{g} of f and g respectively such that (f, \overline{f}) and (g, \overline{g}) are homotopic in the category of pairs.

Proof. Let $H:A\times I\to A$ be a homotopy between f and g. Then we have $H(a,0)=f(a),\ H(a,1)=g(a)$ and H(*,t)=*. Since (X,A) is a homotopy equivalence extendable pair, there exists a homotopy equivalence extension $\overline{f}:X\to X$ of f. Define $\overline{f}\sqcup iH:X\times 0\sqcup A\times I\to X$ by $(\overline{f}\sqcup iH)|_{X\times 0}=\overline{f}$ and $(\overline{f}\sqcup iH)|_{A\times I}=iH$, where $i:A\to X$ is the inclusion. Then it is well-defined, since $\overline{f}(a)=f(a)=H(a,0)$, for each $a\in A$. Since the inclusion $i:A\to X$ is a cofibration, the map $(\overline{f}\sqcup H)$ has an extension $\overline{H}:X\times I\to X$. Define $\overline{g}:X\to X$ by $\overline{g}(x)=\overline{H}(x,1)$. Then $\overline{g}(a)=\overline{H}(a,1)=H(a,1)=g(a)$. So (g,\overline{g}) is a morphism. Since \overline{g} is homotopic to \overline{f} by the homotopy $\overline{H},\overline{g}$ is a self homotopy equivalence. Furthermore, we have $(\overline{H},H):(\overline{f},f)\simeq (g,\overline{g})$, since $\overline{H}\circ i=i\circ H$, where $i:A\to X$ is the inclusion. Therefore, \overline{g} is a homotopy equivalence extension of g.

3. Proof of the main theorem

Let X be a CW-complex, X_n be the n-th Postnikov section of X and $i_n: X \to X_n$ the inclusion. It is a well-known fact that X_n can be obtained by attaching (i+1)-cells (i>n) to X, so that X_n kills the homotopy groups $\pi_i(X)$ for i>n. Thus for every $n\geq 1$, X_n has the following properties:

- (a) (X_n, X) is a relative CW-complex with cells in dimensions $\geq n+2$;
- (b) $\pi_i(X_n) = 0 \text{ if } i > n;$
- (c) $i_n^{\sharp}: \pi_i(X_n) \to \pi_i(X)$ is an isomorphism if $i \leq n$.

Now we introduce the following proposition needed in this section.

PROPOSITION 3.1. ([3], p131) Suppose S is a set of integers and (Y,X) is a relative CW-complex such that if $e_{\alpha} \subset Y - X$ is a cell, dim

 $e_{\alpha} \in S$. Suppose that $\pi_{i-1}(Z, *) = 0$ for any $i \in S$. Then any map $f: X \to Z$ admits an extension $\overline{f}: Y \to Z$:

$$Y \\ i \uparrow \qquad \searrow \overline{f} \\ X \xrightarrow{f} Z$$

PROPOSITION 3.2. For each Postnikov section X_n , $n \ge 1$, the CW-pair (X_n, X) is a homotopy equivalence extendable pair.

Proof. Let $f: X \to X$ be a self map. Consider the map $i_n f: X \to X_n$. Since $X_n - X$ has cells in dimensions $\geq n + 2$ and $\pi_{i+1}(X_n) = 0$ for any $i \geq n$, $i_n f$ has an extension $\overline{f}: X_n \to X_n$ by the Proposition 3.1:

$$\begin{array}{ccc} X_n & \xrightarrow{\overline{f}} & X_n \\ i_n \uparrow & & \uparrow i_n \\ X & \xrightarrow{f} & X \end{array}$$

Thus $(f,\overline{f}):i_n\to i_n$ is a morphism in the category of pairs. Let us show that \overline{f} is a self homotopy equivalence. Since f is a self homotopy equivalence, there exists a homotopy inverse g and a homotopy $H:X\times I\to X$ such that $H(x,0)=(f\circ g)(x),\,H(x,1)=x$ and H(*,t)=*. Let \overline{g} be an extension of g constructed in the above manner. Define a map

$$\overline{f}\circ \overline{g}\sqcup i_nH\sqcup id_{X_n}: X_n\times 0\sqcup X\times I\sqcup X_n\times 1\to X_n$$

by $\overline{f} \circ \overline{g} \sqcup i_n H \sqcup id_{X_n}|_{X_n \times 0} = \overline{f} \circ \overline{g}$, $\overline{f} \circ \overline{g} \sqcup i_n H \sqcup id_{X_n}|_{X \times I} = i_n H$ and $\overline{f} \circ \overline{g} \sqcup i_n H \sqcup id_{X_n}|_{X_n \times 1} = id_{X_n}$. Since $X_n \times I - (X_n \times 0 \sqcup X \times I \sqcup X_n \times 1)$ has cells of the form $e^i_\alpha \times e^1$, where $e^i_\alpha \subset X_n - X$ and $e^1 = I - \{0, 1\}$. But $X_n - X$ has cells in dimensions $\geq n + 2$. So $X^n \times I - (X_n \times 0 \sqcup X \times I \sqcup X_n \times 1)$ has cells in dimensions $\geq n + 3$. Since $\pi_i(X_n) = 0$ for i > n, the map $\overline{f} \circ \overline{g} \sqcup i_n H \sqcup id_{X_n}$ has an extension $\overline{H} : X_n \times I \to X_n$ by Proposition 3.1. The extension \overline{H} is a homotopy between $\overline{f} \circ \overline{g}$ and id_{X_n} relative to * in X_n . Similarly, $\overline{g} \circ \overline{f}$ is homotopic to id_{X_n} relative to * in X_n .

Thus \overline{g} is a homotopy inverse of \overline{f} and \overline{f} is an equivalence extension of f.

REMARK 3.3. In the proof of the above proposition, we have $\overline{H}(i_n \times id_I) = i_n H$ since \overline{H} is an extension of $i_n H$. This means that (H, \overline{H}) is a homotopy between $(f, \overline{f}) \circ (g, \overline{g})$ and (id_X, id_{X_n}) in the category of pairs. So we have $[f, \overline{f}] \in \mathcal{E}(X_n, X)$.

THEOREM 3.4. Let X_n be the n-th Postnikov section of X for each $n \ge 1$. Then we have the following split short exact sequence:

(3)
$$1 \to \mathcal{E}(X_n, X; id_X) \xrightarrow{\Phi} \mathcal{E}(X_n, X) \xrightarrow{\Psi} \mathcal{E}(X) \to 1.$$

where Φ is the inclusion and Ψ is a homomorphism defined by $\Psi[f, \overline{f}] = [f]$.

Proof. By Theorem 2.4, we have the following exact sequence;

$$(4) 1 \to \mathcal{E}(X_n, X; id_X) \xrightarrow{\Phi} \mathcal{E}(X_n, X) \xrightarrow{\Psi} \mathcal{E}(X).$$

Thus it is sufficient to show that there is a homomorphism $J: \mathcal{E}(X) \to \mathcal{E}(X_n, X)$ such that $\Psi \circ J = id_{\mathcal{E}(X)}$. Let [f] be an element in $\mathcal{E}(X)$. Then there is a homotopy equivalence extension \overline{f} of f by Proposition 3.2. Define $J: \mathcal{E}(X) \to \mathcal{E}(X_n, X)$ by $J[f] = [f, \overline{f}]$.

Let us show that J is well-defined. By Proposition 2.6 and Remark 3.3, it is sufficient to show that if $\overline{f_0}$ and $\overline{f_1}$ are any two homotopy equivalence extensions of f, then $(f, \overline{f_0})$ and $(f, \overline{f_1})$ are homotopic in the category of pairs. Define a map

$$\overline{f_0} \sqcup i_n f \sqcup \overline{f_1} : X_n \times 0 \sqcup X \times I \sqcup X_n \times 1 \to X_n$$

by $\overline{f_0} \sqcup i_n f \sqcup \overline{f_1}|_{X_n \times 0} = \overline{f_0}$, $\overline{f_0} \sqcup i_n f \sqcup \overline{f_1}|_{X \times I} = i_n f$ and $\overline{f_0} \sqcup i_n f \sqcup \overline{f_1}|_{X_n \times 1} = \overline{f_1}$, where i_n is the inclusion from X to X_n . By Theorem 3.1, $\overline{f_0} \sqcup i_n f \sqcup \overline{f_1}$ has an extension $\overline{H}: X_n \times I \to X_n$. Since $\overline{H}(i_n \times id_I) = i_n f$, the pair map (f, \overline{H}) is a homotopy between $(f, \overline{f_0})$ and $(f, \overline{f_1})$ in the category of pairs.

Moreover, $\Psi \circ J = id_{\mathcal{E}(X)}$ by definitions of Ψ and J.

Let us show that J is a homomorphism. Let [f] and [g] be elements in $\mathcal{E}(X)$. Since

$$J([f] \cdot [g]) = J[f \circ g] = [f \circ g, \overline{f \circ g}]$$

and

$$J[f] \cdot J[g] = [f, \overline{f}] \cdot [g, \overline{g}] = [f \circ g, \overline{f} \circ \overline{g}],$$

we have to show that $(f \circ g, \overline{f} \circ \overline{g})$ is homotopic to $(f \circ g, \overline{f} \circ \overline{g})$ in the category of pairs. Let $H: X \times I \to X$ be the map given by H(x,t) = f(g(x)) for $(x,t) \in X \times I$. Define a map

$$\overline{f \circ g} \sqcup i_n H \sqcup \overline{f} \circ \overline{g} : X_n \times 0 \sqcup X \times I \sqcup X_n \times 1 \to X_n$$

by $(\overline{f \circ g} \sqcup i_n H \sqcup \overline{f} \circ \overline{g})|_{X_n \times 0} = \overline{f \circ g}$, $(\overline{f \circ g} \sqcup i_n H \sqcup \overline{f} \circ \overline{g})|_{X \times I} = i_n H$ and $(\overline{f \circ g} \sqcup i_n H \sqcup \overline{f} \circ \overline{g})|_{X_n \times 1} = \overline{f} \circ \overline{g}$. By Proposition 3.1, the map $\overline{f \circ g} \sqcup i_n H \sqcup \overline{f} \circ \overline{g}$ has an extension $\overline{H} : X_n \times I \to X_n$. Since $\overline{H}(i_n \times id_I) = \overline{H}(i_n \times id_I)$

 i_nH , the pair (H,\overline{H}) is a homotopy between $(f\circ g,\overline{f}\circ \overline{g})$ and $(f\circ g,\overline{f}\circ \overline{g})$ in the category of pairs.

THEOREM 3.5. Let X_n be the n-th Postnikov section for $n \geq 1$. Then $\mathcal{E}(X_n, X)$ is isomorphic to $\mathcal{E}(X)$.

Proof. By Theorem 3.4, it is sufficient to show that $\mathcal{E}(X_n, X; id_X)$ is trivial. Let us show that $\mathcal{E}(X_n, X; id_X) = \{[id_X, id_{X_n}]\}$. Let $[id_X, \overline{f}]$ be an element in $\mathcal{E}(X_n, X; id_X)$ and $H: X \times I \to X$ be the map given by H(x,t) = x for $(x,t) \in X \times I$. Define

$$H': X_n \times 0 \sqcup X \times I \sqcup X_n \times 1 \to X_n$$

by $H'|_{X_n\times 0}=\overline{f},\ H'|_{X\times I}=i_nH$ and $H'|_{X_n\times 1}=id_{X_n}$. By Proposition 3.1, H' has an extension $\overline{H}:X_n\times I\to X_n$. So we have $\overline{H}(x,0)=\overline{f},$ $\overline{H}(x,1)=id_{X_n},\ \overline{H}(*,t)=*$ and $\overline{H}(i_n\times id_I)=i_nH$. Therefore, the pair (H,\overline{H}) is a homotopy between (id_X,\overline{f}) and (id_X,id_{X_n}) . This implies $[id_X,\overline{f}]=[id_X,id_{X_n}]$.

The Eilenberg-Maclane space $K(\pi, n)$ can be obtained from the Moore space $M(\pi, n)$ by killing homotopy groups of order $\geq n + 1$. That is, $k(\pi, n) = M(\pi, n)_n$. Thus we have following corollary:

COROLLARY 3.6. For each $n \geq 1$, $\mathcal{E}(K(\pi, n), M(\pi, n))$ is isomorphic to $\mathcal{E}(M(\pi, n))$.

We know that $\mathcal{E}(K(\pi,n)) = Aut(\pi)$, where $Aut(\pi)$ is the group of automorphisms on π [1]. Moreover, it is a well known fact that if a group π is non abelian, then $Aut(\pi)$ is not trivial. Thus for such group π , $\mathcal{E}(K(\pi,n))$ is not trivial. But $\mathcal{E}(K(\pi,n),M(\pi,n);id_{M(\pi,n)})$ is always trivial by Theorem 3.4. So $\mathcal{E}(X_n,X;id_X)$ is not isomorphic to $\mathcal{E}(X_n)$ in general.

EXAMPLE 3.7. It is well-known facts that $\mathcal{E}(\mathbb{R}P^n) \equiv \mathbb{Z}_2 \equiv \mathcal{E}(S^n)$ [1]. Since $\mathbb{R}P^2 = M(\mathbb{Z}_2, 1)$, $\mathbb{R}P^{\infty} = K(\mathbb{Z}_2, 1)$, $\mathbb{C}P^{\infty} = K(\mathbb{Z}_2, 2)$ and $S^2 = M(\mathbb{Z}_2, 2)$, we have

$$\mathcal{E}(\mathbb{R}P^{\infty}, \mathbb{R}P^2) \equiv \mathcal{E}(\mathbb{R}P^2) \equiv \mathbb{Z}_2$$

and

$$\mathcal{E}(\mathbb{C}P^{\infty}, S^2) \equiv \mathcal{E}(S^2) \equiv \mathbb{Z}_2.$$

More generally, since $S^n = M(\mathbb{Z}, n)$, we have

$$\mathcal{E}(K(\mathbb{Z},n),M(\mathbb{Z},n)) \equiv \mathcal{E}(K(\mathbb{Z},n),S^n)) \equiv \mathcal{E}(S^n)) \equiv \mathbb{Z}_2.$$

ACKNOWLEDGEMENT. I would like to thank the referee for his helpful comments and suggestions, all of which led to improvements in this work.

References

- [1] M. Arkowitz, The group of self-homotopy equivalences- a survey, Lecture Notes in Math. 1425 (Springer, New York, 1990), 170–203.
- [2] M. Arkowitz and G. Lupton, On finiteness of subgroups of self-homotopy equivalences, Contemp. Math. 181 (1995), 1–25.
- [3] B. Gray, Homotopy theory, Academic press, Inc., New York, 1975.
- [4] P. Hilton, Homotopy theory and Duality, Gordon and Beach, New York, 1965.
- [5] K. Y. Lee, The group of self pair homotopy equivalences, Preprint.
- [6] K. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136 (1989) 293–301.
- [7] J. Rutter, The group of self equivalence classes of CW-complexes, Math. Proc. Cambridge Philos. Soc. 93 (1983), 275–293.
- [8] N. Sawashita, On the group of self-equivalences of the product spheres, Hiroshima Math. J. 5 (1975), 69–86.
- [9] A. Sieradski, Twisted self-homotopy equivalences, Pacific J. Math. 34 (1970), 789–802.
- [10] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

DEPARTMENT OF INFORMATION AND MATHEMATICS, KOREA UNIVERSITY, CHOCHI-WON 339-701, KOREA

E-mail: keyolee@korea.ac.kr