J. Korean Math. Soc. 43 (2006), No. 5, pp. 1047-1063

GOTTLIEB GROUPS AND SUBGROUPS OF THE
GROUP OF SELF-HOMOTOPY EQUIVALENCES

JAE-RYoNG KiMm, NOBUYUKI ODA,
JIANZHONG PAN, AND Moo HA Woo

ABSTRACT. Let £4(X) be the subgroups of £(X) consisting of ho-
motopy classes of self-homotopy equivalences that fix homotopy
groups through the dimension of X and £.(X) be the subgroup
of £(X) that fix homology groups for all dimension. In this pa-
per, we establish some connections between the homotopy group of
X and the subgroup £4(X) N E(X) of £(X). We also give some
relations between m, (W), as well as a generalized Gottlieb group
GI(W, X), and a subset M;N(X, W) of [X,W]. Finally we es-
tablish a connection between the coGottlieb group of X and the
subgroup of £(X) consisting of homotopy classes of self-homotopy
equivalences that fix cohomology groups.

1. Introduction and preliminaries

By a space, we mean a connected CW-complex of finite type. We
mainly consider finite dimensional CW-complexes with base point. We
begin this section with remarks about the set of all base point preserving
continuous maps from a space X to a space W. This set of maps splits
up into disjoint equivalence classes, called homotopy classes. We write
[X, W] for the set of all base point preserving homotopy classes of the
maps from X to W; by keeping X fixed and varying W, this set is an
invariant of the homotopy type of W in the sense that it is determined
by the homotopy equivalence of spaces: the set [X, W] can often be
endowed, in a natural way, with some algebraic structure, and we obtain
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exactly the algebraic invariant. Alternatively, we can keep W fixed and
vary X: once again a homotopy invariant results. Let W be a CW-
complex of dimension N and £(W) the group of homotopy classes of
self-homotopy equivalences of W. In this paper, we give results about
some subgroups of £(W) and we will extend these results to more general
cases.

We now review some standard material that we will use. A cofibration
sequence Z Y 25 X % $Z where X is the mapping cone of +,
gives a homotopy coaction ¢: X — X V XZ, obtained by pinching the
‘equator’ of the cone of Z to a point. This coaction induces an action of
[XZ,W] on [X, W] for any space W. That is,

po [ X, W] x [BZ,W] — [X, W], u(f a)=f*
for any o € [¥Z, W] and f € [X, W], where

roxSxvez™Mwvw Tow.

The following properties of this action are mentioned on p. 174 of Hilton
[6]:

(1) If h: W — W', then h(f*) = (hf)h,

(2) If o, B € [EZ, W], then (f*)F = flatB),

We are interested in the effect that f¢ has on homology and homotopy
groups. This is described in the following results by Proposition 2.1 of

[1].
ProposITION 1.1. For the above cofibration sequence, suppose f €
[X,W] and « € [£Z,W]. Then we have the following for any i > 0 :
(1) The induced homology homomorphism (f*), : Hi(X) — H;(W)
is given by
(F9)e(@) = fu(@) + 0xgu ()
for each z € H;(X).
(2) Suppose that (f,a): X V XZ— W factors through the product
X x XZ. Then the induced homotopy homomorphism (f®)y : my(X) —
mi(W) is given by
(f*)s(@) = fi(z) + oyqy(z)
for each x € m(X).

We now specialize to a mapping cone sequence of the form

sl Ly LLx L, xvenl= g7
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ie. X =Y U, e" Then we have an action of m, (W) on [X,W]. We
will consider elements of the form f® € [X,W] for f € [X,W] and
a € mp(W).

Let X be a CW-complex of dimension N and £(X) the group of
homotopy classes of self-equivalences of X. If we consider elements of
the form * € [X, X] for the identity map ¢ of X and « € m,(X), these
are not self-homotopy equivalences in general.

In [1], Arkowitz, Lupton and Murillo studied the subgroup £4x(X)
and &(X) of £(X) as follows (cf. Dror and Zabrodsky [4]; Maruyama
[8] and [9]):

Ep(X) ={f € €(X) | fy =1:m(X) — m(X) for i < N},
Egoo(X)={felX)]| fy=1:m(X)— m(X) for all i},
E(X)={f€EX)| fr =1: Hy(X) — H;(X) for all }.
Maruyama [10] introduces a subset of [X, W] as follows:
Z(X, W) ={aec[X,W] | ay=0:m(X) — m(W) for i < n}

If we consider £4(X) C [X, X] and ZJ (X, X) C [X, X] as two special
subsets in [X, X|, we can give some definitions which generalize them
and which we will study in the next section.

DEFINITION 1.1. Let fe[X,W]. We define

MLX, W) ={g € [X,W]| g = f. : Hi(X) — Hy(W) for all i}.
Similarly we denote
ML (X, W) ={g € [X,W]]| gs = fy : m(X) — m(W) for all i < N}.

Especially, we denote M;(X, W) = MJ?‘;N(X’ W) if W is a N-
dimensional CW-complex. Thus we can get

My (X, W) = Z4(X, W)
My (W, W) = Ex(W)
oo (W, W) = E4oo(W),

where 0 denotes the constant map.

Recall the n’th Gottlieb group [5] of m,(W), denoted by G,(W),
consists of those o € m,(W) for which there is an associated map F :
W x 8" — W such that the following diagram is homotopy commutative:
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W x 8™

w
J v

WV st 4% wyw

2. Gottlieb groups and subgroups of self-homotopy equiva-
lences

It was shown in Theorem 2.3 of [1] that there is a homomorphism
between the Gottlieb group of X and £4(X) and &,(X) as follows.

THEOREM 2.1. Let X = YU, e" be a 1-connected n-dimensional com-
plex. Suppose that ¢z = 0 : m,(X) — m,(S™). Then there is a homo-
morphism

0 :Gn(X) - Ex(X)
defined by 6(c) = 1* for a € Gp,(X). This homomorphism restricts to
0 : Go(X) NKerhy, — E(X) N E(X),
where hy, : m,(X) — Hp(X) denotes the Hurewicz homomorphism.

For the map 6 : m,(X) — [X, X] given by 8(a) = * for a € m,(X)
and the group £4(X) C [X, X], this theorem gives a condition to be
Gn(X) C 071(£4(X)). The objects of this section is to find conditions
such that m,(X) C 071(€x(X)) and mp(X) C C_I(Z;;(X,X)) for a
function ¢ : m,(X) — [X, X] defined later.

First we will find some conditions for 6 to be a homomorphism from
the homotopy group 7, (X) to £4(X). Consider the cofibration sequence

sty Lux s (n>2).

THEOREM 2.2. Let n > 2 and Y be l:connected. Let X =Y U, e"
with X"~! = Y. If the Hurewicz homomorphism h, = 0 : m,(X) —
H,(X), then there is a homomorphism

0:mp(X) — E(X)NEL(X)
defined by 6(a) =1* for any o € mp(X).

Proof. First we prove that jy : mp(Y) — mp(X) is surjective for all
k<n.
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For n > 1, the Whitehead’s I'-group I',,(X) is defined by the following
image group

I'n(X) = image (jy : ﬂn(X"“l) — mp(X™)),

where j : Y = X"} — X = X" is the inclusion of the (n — 1)-skeleton
to the n-skeleton of X. Let j, : m,(Y) — I'n(X) be the map induced
by js : (V) = mp(X™ ) — mu(X) = mp(X™). Then we have the
following commutative diagram:

Tn(Y)

‘ J
i hr,

n

e To(X) (X)) e Hp(X) ——

where n > 2. The row in the above diagram is the exact sequence of
J.H.C. Whitehead (see [3]). Then we see that j; : mp(Y) — m,(X) is
surjective since j, : m,(Y) — [y (X) is surjective and by, = 0 : mp(X) —
H,(X). It is clear that jy : mx(Y) — mp(X) is surjective for all k < n.
Therefore jy : mx(Y') — m(X) is surjective for all k < n.

Since hy, = 0 : m(X) — Hp(X), we have hn(a) = 0 in Hp(X)
for any a € m,(X). This implies ax = 0 : Hy(S™) — Hp(X) and
hence a,q, = 0 : Hi(X) — Hi(X) for any k > 0. We remark that X
is a 1-connected n-dimensional complex by the assumption. Hence by
Proposition 1.1 (1), we have 1* € £,(X) for any element o of m,(X).

Let ¢: X — X VvV S™ be the co-action and 41 : X — X V S™ be the
inclusion map to the first factor. Then we have

cj=07:Y — XVS"
Let ¢ : X — X be the identity map. It follows that for any element
6 € m(X) for k < n, there exists an element 8 € (YY) such that
74(B) = 6 by the discussion above. Therefore we have
(*)(0) = V(Va)s
= V(Va)js
= V(Va)iijs
= 1xjB =2
Thus 6(a) € £4(X). Suppose that o and § are two elements in m,(X).

We remark that («®)4(8) = 0 since «* = 6(a) € £4(X) as is shown
above. It follows that

0(a+p) = 2B — ot () (B) — (La)(b")u(ﬁ) — (Lab)b“ﬁ = 9B = (a)8(0)
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by the formulas fo+# = (f*)8 and (hf)"* = h(f)®. This completes the
proof. O

P. J. Kahn [7] has proved the following:

THEOREM 2.3. Let X be a homotopy type of the mapping cone of a
map v:8™ 1 Y = X, n > 2, where X,, is the r-fold bouquet of
n-spheres, 7 = rankH,(X) > 1. Then there exists an exact sequence

=Y, X] 0 (X)L £a(X) B £4(Y),

where R is given by restriction to Y.
We will slightly extend above theorem.

THEOREM 2.4. Letn > 2 and Y be 1-connected homotopy associative
co-H-space. Let X =Y U, e" with finite n'th homotopy group and
X"2 =Y. Then there exists an exact sequence

[SY, X] = ma(X) 5 E4(X) 5 E4(Y),
where R is given by restriction to Y.

Proof. By Corollary 3.2.2 of Rutter [13] (cf. also Lemmas 2.7, 2.8
and 2.9 of [12]), we have the following exact sequence:

2y, x] —92, (gn x] 2 (X, X]1, 2o [V, X]; < [S77, X],

where [X, X1,
homotopy sets.

By Theorem 2.2, the image of 6 is contained £4(X) because the
Hurewicz map hy, = 0: m,(X) — H,(X) by the assumption that m,(X)
is a finite group. Next we show that the image of R (= j*) is contained

in £4(Y). Consider the following commutative diagram
fy=1

and [Y, X]; show that 1x and j are base points of each

mi(X) mi(X)
jn’ I I
m(¥) ——L (Y

)| s
7T1‘+1(X,Y)=0 7Ti+1(X,Y):O

for any f € S#(X) and each k < n — 2. From the above diagram, we
have

ji(a) = fugy(e) = jR(fy(a) = jy(R(f)s(e))-
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Since jy is injective, we have o = R(f)s(«x) for any k < dimY'.
Then the exactness of the sequence is obtained by the exact sequence
of Rutter. O

Hence if we use the above Theorem and [7, Lemma 4], we have the
following

COROLLARY 2.1. Let X be a closed compact, oriented, C*, (n —
1)-connected 2n-manifold, n > 2. Then there is an exact sequence
(Y, X] = man(X) 5 £4(X) S 0.

Especially, if we let X = 8™ x 8™, then we have

E4(X) is isomorphic to mon(X) if n = 2,6 or 3(mod 4)

E4(X) is isomorphic to mon(X)/(Z2 ® Z3) if n # 2,6 or 3(mod 4).

Proof. If we consider the following exact sequence
Y, X] — mon(X) 2 £4(X) B £4(Y)

from the above theorem, it is sufficient to show that the image of R is
trivial. It will be proved by the same method of [2, Proposition 6.1] that
the kernel of R is £4(X). O

Next we will show a condition that there exists a morphism
0 m(X) — Zu(X, X).
Recall the generalized Gottlieb group [16] of m, (W), denoted by GfL(I/V,

X), consists of those o € m, (W) for which there is an associated map F :
X x 8™ — W such that the following diagram is homotopy commutative:

X x s w
] v
fVa
XvSst Wvw

Since G, (W) = GL (W, W), this group is a generalization of Gottlieb
group and it is clear that G,(W) C GL(W, X) C mn(W). -
By the new notations and Proposition 1.1, we have the following:

COROLLARY 2.2. Let X =Y U, e" be a 1-connected CW-complex,
a€m, (W) and f € [X,W]. Then the following results hold.

(1) f* € ML(X, W) if and only if augs = 0 : Hp(X) — Hn(W).

(2) Suppose that o € Gf;(VV, X). Then f* ¢ MQ(X, W) if and only
if ag € MY (X, W).
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Here we want to show a condition for m,(W) to be contained in
oL (M (X, W)).

THEOREM 2.5. Let n > 2 and Y be l-connected. Let X =Y U, e"
with X" ' =Y and dimW < nand f € [X,W]. If ¢ = 0 : m,(X) —
7 (S™), then there exists a morphism

O : mp (W) — ML (X, W)
which is defined by ©(a) = f* for any a € 7, (W). This morphism
restricts to
' : Ker {hn : (W) — Hn(W)} —» ML(X, W) n ML(X, W),
where hy, : mp (W) — H,,(W) is the Hurewicz homomorphism.

Proof. By Blaker-Massey Theorem (7.12) on p. 368 (Chapter VII) of
[15], we see that
Py (X)Y) — mp(X/Y) = m,(S™)

is an isomorphism when Y is 1-connected. We consider the long homo-
topy exact sequence

j k
o (V) L (X)) — (X, V) — -

Since pgky = g3 = 0 : Tp(X) — ™, (S™) and p; is an isomorphism, we
see that ky = 0 : 7, (X) — 7,(X,Y) and hence jy : m,(Y) — mp(X)
is surjective and hence jy : m(Y) — m;(X) is surjective for any ¢ < n.
Hence for any element § € 7;(X) for ¢ < dimW < n, there exists an
element 8 € m;(Y) such that jy(8) = d. Let ¢ : X — X V .S™ be the
co-action and 7 : X — X Vv 8™ be the inclusion map to the first factor.
Then as in the proof of Theorem 2.2 we have
cj=11j:Y — XVS~
Hence we have

(Fn@) = V(I Va)ed
= V(fVa)iB

V(fVa)jp
38 = fy(9).
It follows that ©(a) = f* € M;;(X, w).

Now suppose that h,(o) = 0 for an element « € 7, (W). Then o, =
0: H,(S™) — Ho(W). It follows that a.g. = 0 : Hi(X) — H;(S™) —
H;(W) for any i > 0 and hence f* € M{(X, W) by Proposition 1.1 (1).
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The following result is (partly) a generalization of Theorem 2.3 of [1].
(In Theorem 2.3 of [1], the condition X™~! =Y is not assumed.) O

COROLLARY 2.3. Let n > 2 and Y be 1-connected. Let X =Y U, e"
with X" ' =Y. If ¢y = 0 : m,(X) — m,(S"), then there exists a
homomorphism

0 mr(X) — E(X)NE4(X)
defined by 6(a) =1* for any a € m,(X).

Proof. If gy = 0 : my(X) — mp(S™), then jy : mp(Y) — mp(X) is
surjective as is shown in the proof of Theorem 2.5, and hence we see that
in : Tp(X) — mp(X) is surjective by the assumption that X*1 =Y.
It follows that the Hurewicz homomorphism h, = 0: m,(X) — H,(X),
and hence Theorem 2.2 implies the result. O

COROLLARY 2.4. Let n > 2 and Y be 1-connected. Let X =Y U, e
with X" 1 =Y. Ifg = 0 : my(X) — m,(S™), then there exists a
morphism

¢ mn(X) — ZE(X, X) = MYU(X, X)
defined by ((a) = 0% = aq for any o € 1, (X). This morphism restricts
to

¢ Ker {hn : mo(X) — Hn(X)} — MUX, X) N ZE(X, X).

The function ¢ defined above satisfies ((a)((8) = 0 for any «, 8 €
mn(X).

Proof. By Proposition 2.6 of [11], we see that ((a) = 0% = x+a =
q¢*(a) = aq . Then the result follows by putting X = W in Theorem
2.5. U

Arkowitz, Lupton and Murillo [1] showed a space X with the ho-
momorphism 6 : Gp(X) # 0 — £4(X) but they didn’t show that the
homomorphism is nontrivial. Next theorem gives a condition for X
which does not have a nontrivial homomorphism given by 6(a) = 2.

THEOREM 2.6. Let X = YU,e" be a 1-connected n-dimensional CW -
complex. Suppose that ¢ : X — S™ has a right homotopy inverse. If
0 : Gn(X) — E4(X) given by 0(a) = 1* is a well-defined homomorphism,
then Gn(X) Is trivial.

Proof. Let S 1 Y — X % 571 = §" be the mapping cone
sequence for X =Y U, e™. For any a € GRr(X), we have 1* € £4(X)
if and only if oyqy = 0 : m(X) — m(X) for ¢ < n by Corollary 2.2
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(2) of [1]. Let s € mp(X) be a right homotopy inverse of q. Then for
tgn € mp(S™), we have

a = argn = ay(Lgn) = (ags)y(esn) = aygy(s) = 0.
Therefore G, (X) is trivial. O

COROLLARY 2.5. Let X = YU,e™ be a 1-connected n-dimensional
CW-complex. If 0 : G,(X) — Ex(X) given by 0(c) = 1* is a well-
defined homomorphism and nontrivial, then G,(X) # 0 and conse-
quently the map q : X — S™ does not have a right homotopy inverse.

The following example has been considered in [1], but here we extend
the domain from G,,(X) to m,(X) and reduce the codomain from £4(X)
to E.(X) NEx(X).

EXAMPLE. Let X = §% x §% = §2v $3 U}, 4,1 €°. Since H5(X) is
infinite cyclic, the Hurewicz homomorphism hs : 75(X) — Hs(X) is
zero. Now Y = S2V 83 = X* and hence X satisfies all the hypothesis
in Theorem 2.2. Therefore we have a homomorphism

6 :75(X) — Eu(X) N ER(X).

Let S4 2] S2v 83 - X 4 364 = S5 be the mapping cone sequence
for X = 82 x 8% =82v 83 Ui 2] e® and F, be the homotopy fibre of
q: X — S°. Since G5(X) is nontrivial, G4(F,) is nontrivial by Theorem
2.6. Because if G4(F,) = 0, the map ¢ : X — S° has a right homotopy
inverse (see [5, Corollary 2.7]).

3. CoGottlieb groups and a subgroup of self-homotopy equ-
ivalences

Let (f,a) : W A wxw 2 X % QZ be the composite map of
the maps f € [W,X] and a € [W,QZ]. A map f: W — X is said to
be cocyclic [14] if there exists a map ® : W — W V X such that the
following diagram is homotopy commutative.

(<]

w WwvX

J

W x X
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We denote by H"(X; G) the cohomology group of X with coefficient
group G, and we simply write H"(X) = H™(X; Z) for the integral co-
homology group of X.

DEFINITION 3.1. G™(X) = {a € H"(X) | « is cocyclic} is said to be
a coGottlieb group.

Let 0Z % X 2 v 2 Z be a fibration sequence. This sequence gives
an action of 2Z on X by p: X x 2Z — X. The induced action of
[W,QZ] on [W, X] is given by

FP=pfxa)A: w2 wxwZXxxaz 4 x
for any o € [W,QZ] and f € [W, X].
REMARK. We will use the same notation f® for the composite maps

f® = p(f x a)A and the f* used in the previous sections, for the
convenience, because we can easily distinguish them.

LEMMA 3.1. Let a € [W,QZ] and f € [W,X]|. Then this action
satisfies the following:

(1) Ifh: W' — W, then (f®)h = (fh)*".

(2) Ifa, B € [W,Q2Z), then (f*)8 = flo+8),

Proof. The first is clear, so we will prove the second case: (2) We
have the following relation

(2 = wlf* % B)A = u((u(f x a)A) x F)A
= pp x laz)|(f x a) x Bl(A x 1y)A
= iy x m)[f x (o x ](1w x A)A
= u(f x (a+pB)A= [t

by using the following homotopy commutative diagram:

(fxa)xB 7
WXW——»WXWXW—»XXQZXQZ XxQZ—»X

> | | d

W—»WXW—————X——>W><W><W—>X><QZ><QZ XxQZ

THEOREM 3.1. Let Q7 % X ™ v 2 Z be a fibration sequence. Let
f €W, X] and a € [W,QZ]. Then the following formulas hold for any
1> 0.
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(1) The induced homotopy homomorphism f%; : m(W) — m(X)
satisfies
£24(z) = fy(z) + as()
for any x € m(W).
(2) If (f,a) : W — X xQZ factors through X VQZ, then the induced
cohomology homomorphism fo* : H{(X;G) — H'(W;G) satisfies

¥ (x) = ¥ () + "¢ (x)
for any x € HY(X; G) and any abelian group G.
Proof. (1) Consider the following diagram:

Ay Hy

WZ(W X W) —(fﬂ»m(X X QZ)

\ J(:Dlu,mu) (:Dlu”mﬁ)\ A(

Wi(W)@ﬂ'i(W) Doy Wz(X)@Wz(QZ)

(W) mi(X)

The right-most triangle commutes since u|X x {*} ~ 1x and u|{*} x
QZ ~ g (cf. [11, Proposition 3.4 (2)]). The fact that the other two parts
of the diagram commute is obvious. By definition, the composite of the
homomorphisms on the top line is the homomorphism induced by f¢.
The other way to go around the diagram gives the desired formula.

(2) By definition, (f*)*(x) is represented by

w S x x 0z 2 x 2 K(GL6)

On the other hand, by definition of the sum of cohomology classes in
H*(W; Z), f*(z) + a*q*(x) is represented by

w Y X x 02 Y% K (G, x K(G,i) S K(G,9).

Now, by the given condition, (f,a) is the composite W % xvaz
XxQZ, where j : XVQZ — X xQZ is the natural inclusion. The second
part follows from the fact that the following two maps are homotopic:

xvaz-Lxxqz -5 x = K(G,i)

Xrq

XvQZ -1 X x Q2 2% K(G,i) x K(G,i) 2 K(G, ).
O
Let &¥(X) = {f € EX) | f* =1: H(X) —» HYX) for i < N},
where N is the homotopical dimension of X denoted by h-dim X. One
use this subgroup instead of requiring f* = 1 for all ¢ because only the
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present subgroup is nilpotent and commutes with the rationalization
operation when X has finite h-dim X.
Let N = h-dim X = max{i | m;(X) # 0 }. We define

EVX)={fe&X)| ff=1:H(X)— H(X) forany i < N}.

COROLLARY 3.1. Let X be the homotopy fibre of a map v : Y —
K(Z,n+1) and o € H*(X). Then

(1) ™ € Euoo(X) if and only if gy = 0 : mp(X) — mp(K(Z,n)) —
mn(X).
(2) Let a € GMX) C H"(X) and N = h-dim X. Then :* € £*(X)
if and only if o*¢* = 0 : HY(X) — HYK(Z,n)) — HYX) for any
1< N.

Proof. (1) is obtained by Theorem 3.1 (1).

(2) By Theorem 3.1 (2), we see that the condition :* € £*/(X) implies
a*¢*=0: H(X) - H'(X) for any i < N.

To prove the converse, we consider two cases separately:
The case N < n : Consider the following composite of homomorphisms.

gpoy : m(X) — m(K(Z,n)) — m(X).
Since m;(X) = 0 for any ¢ > N, we see that gzoy = 0 : m(X) — m(X)
for any ¢ > 0. Then (:*)x = id : m(X) — m(X) for any ¢ > 0 by
Theorem 3.1 (1) and hence (:*)4 is a homotopy equivalence.
The case N > n : By the assumption we see
o’¢"=0: H(X) — H"(K(Z,n)) — H™(X),
and hence (¢*)*(z) = z for any z € H™(X) by Theorem 3.1 (2). It
follows that
LT — (La)(—-a)Lo‘ — (La)(ba)*(—a) — (La>-—a ey L
LT — (L-—a)(a)b_o‘ — (b—a)(f“)*(a) = (L) = yote =0

by Lemma 3.1. Hence (% is a homotopy equivalence. (|

THEOREM 3.2. Let X be the homotopy fiber of a map v : ¥ —

K(Z,n+1) and n is h-dim X. Suppose ¢* =0: H*(X) — H"(K(Z,n)).
Then there is a homomorphism 6 : GM(X) — £¥'(X).

Proof. The condition ¢* = 0 : H*(X) — H"(K(Z,n)) implies that
¢t =0: H(X)— H'(K(Z,n)) for i < n. It follows that :* € £*'(X) by
Corollary 3.1. Let a, 8 € G™(X) be any elements. We see

ol = (P)"(a) = (a) + B'¢"(@) = a
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by Theorem 3.1 (2). Since

(1) = o+
and
2P = (P) = Bred - pra
we have
0o+ B) = TP = BHe = 128 = () 6(B).
Therefore 6 is a homomorphism. Ol

We define a map
DH : HY(X) = [X,K(Z,n)] — Hom(m,(X), Z)
by DH(z) = zy : mp(X) — m(K(Z,n)).

COROLLARY 3.2. Let X be the homotopy fiber of a map v : Y —
K(Z,n+1) and n ish-dim X. Suppose ¢* =0: H"(X) — H*(K(Z,n)).
Then there is a homomorphism

0" : Ker (DH) N G™(X) — £(X) N Epoo(X)
given by 6'(a) = 1.

Proof. Let o be an element of Ker (DH). Then o = 0 : m,(X) —
(K (Z,n)). Since m;(K(Z,n)) = 0 for all i # n, we see gyoy = 0 :
mi(X) — m(X) for all i. Therefore 8(a) = 1% € Ex50(X) by Corollary
3.1 and the proof is completed. U

THEOREM 3.3. Let X be the homotopy fiber of a map v : ¥ —
K(Z,n+ 1) and n is h-dim X. Suppose q : K(Z,n) — X has a left
homotopy inverse. If 6 : G*(X) — E£*(X) given by 6(a) = ¢* is a
well-defined homomorphism, then G"(X) = 0.

Proof. Suppose that 8 : G*(X) — £*(X) given by 8(a) = 1* is a
well-defined homomorphism. Then for any a € G™(X), we see a*¢* =

0: HY(X) — HX) for i < n by Corollary 3.1. Let s € H*(X) be a left
homotopy inverse of g. Then for 1z, € H"(K(Z,n)), we have

@ =1lKg(zn)= a*(LK(Z,n)) = a*(SQ)*(LK(Z,n)) = a*q*(s) = 0.
Therefore G™(X) is trivial. O

COROLLARY 3.3. Let X be the homotopy fiber of a map v : Y —
K(Z,n+1) and n is h-dim X. Suppose the homomorphism 8 : G*(X) —
E*(X) given by 6(a) = 1* is well-defined and nontrivial. Then G*(X) #
0 and consequently the map q : K(Z,n) — X does not have a left
homotopy inverse .
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To work rationally, one has to define DH instead of DH and one
needs the following rational version of Corollary 3.1.

We now assume that all the spaces are 1-connected rational spaces.
We define

DHg : H"(X; Q) — Hom (m,(X), Q)
by DHg(z) = zp : ma(X) — mp(K(Q,n)) for any z € H(X;Q) =
[X, K(Q,n)]. Moreover we define
Go(X)={a€ H"(X;Q) | a is cocylic},
&Y (X)={fe&X)| f=1:H(X;Q) - H'(X;Q)
for any ¢ < N = h-dim (X)) }.

COROLLARY 3.1’. (rational case) Let X be the homotopy fibre of a
mapvy:Y — K(Q,n+1) and « € H*(X; Q). Then

(1) o* € Euno(X) if and only if gy = 0 : T (X) — 7, (K(Q,n)) —
T (X).
(2) Let o € G{(X) C H*(X) and N = h-dim (X). Then 1* €
EH'(X) if and only if a*¢" = 0 : H{(X;Q) — HYK(Q,n);Q) —
HYX;Q) forany i <N. '

Proof. The proof of Corollary 3.1 can be applied changing the coef-
ficient group Z to G. O

LEMMA 3.2. Suppose that we have a fibration sequence
XLy L KQn+1)
with X and Y l-connected. Ifv:Y — K(Q,n + 1) is nontrivial, then
7% H"(Y;Q) — H™"(X; Q) is surjective.

Proof. The Lemma is a direct consequence of the “Wang” sequence of
the given fibration. The original Wang sequence is an infinite long exact
sequence and applies only to fibrations with sphere as a base space. A
usual argument using the Serre spectral sequence gives a part of Wang
sequence which is enough for our purpose. O

THEOREM 3.4. Let X be the homotopy fibre of a map v : ¥ —
K(Q,n + 1) and assume that n = 1 (mod2). If v is nontrivial, then
there exists a homomorphism

0:GH(X) — o' (X).
The homomorphism @ defined above restricts to
6’ : Ker (DHQ) N GH(X) = £5'(X) N Egoo(X).
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Proof. By Lemma 3.2, we see that ¢* = 0: H"(X; Q) — H"(K(Q,n);
Q). Since K(Q,n) ~ S3 when n = 1 (mod?2), we see that ¢* = 0 :
HY(X;Q) - H{K(Q,n); Q) for any ¢ > 0. Hence by Theorem 3.1 (2),
we have 1% € £5/(X) for any o € GB(X).

If « € Ker {DHg : H"(X; Q) — Hom (7m,(X), Q)}, then we see that

qyoy = 0: 7Tn(X) — ﬁn(K(Q,n)) — ﬂ‘n(X),
and hence 1* € Euo0(X) by Theorem 3.1 (1). O
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