• 제목/요약/키워드: holomorphic extension

검색결과 12건 처리시간 0.019초

A HAHN-BANACH EXTENSION THEOREM FOR ENTIRE FUNCTIONS OF NUCLEAR TYPE

  • Nishihara, Masaru
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.131-143
    • /
    • 2004
  • Let Ε and F be locally convex spaces over C. We assume that Ε is a nuclear space and F is a Banach space. Let f be a holomorphic mapping from Ε into F. Then we show that f is of uniformly bounded type if and only if, for an arbitrary locally convex space G containing Ε as a closed subspace, f can be extended to a holomorphic mapping from G into F.

SECOND MAIN THEOREM FOR HOLOMORPHIC CURVES INTO ALGEBRAIC VARIETIES WITH THE MOVING TARGETS ON AN ANGULAR DOMAIN

  • Chen, Jiali;Zhang, Qingcai
    • 대한수학회보
    • /
    • 제59권5호
    • /
    • pp.1191-1213
    • /
    • 2022
  • In this paper, we will prove the second main theorem for holomorphic curves intersecting the moving hypersurfaces in subgeneral position with index on an angular domain. Our results are an extension of the previous second main theorems for holomorphic curves with moving targets on an angular domain.

SOBOLEV ESTIMATES FOR THE LOCAL EXTENSION OF BOUNDARY HOLOMORPHIC FORMS ON REAL HYPERSURFACES IN ℂn

  • Cho, Sanghyun
    • 대한수학회지
    • /
    • 제50권3호
    • /
    • pp.479-491
    • /
    • 2013
  • Let M be a smooth real hypersurface in complex space of dimension $n$, $n{\geq}3$, and assume that the Levi-form at $z_0$ on M has at least $(q+1)$-positive eigenvalues, $1{\leq}q{\leq}n-2$. We estimate solutions of the local $\bar{\partial}$-closed extension problem near $z_0$ for $(p,q)$-forms in Sobolev spaces. Using this result, we estimate the local solution of tangential Cauchy-Riemann equation near $z_0$ in Sobolev spaces.

THE EXTENSION OF SOLUTIONS FOR THE CAUCHY PROBLEM IN THE COMPLEX DOMAIN

  • Lee, Eun-Gu;Kim, Dohan
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.185-190
    • /
    • 1989
  • In [4], J. Leray introduced the notion of partial hyperbolicity to characterize the operators for which the non-characteristic Cauchy problem is solvable in the Geverey class for any data which are holomorphic in a part of variables x"=(x$_{2}$,..,x$_{l}$ ) in the initial hyperplane x$_{1}$=0. A linear partial differential operator is called partially hyperbolic modulo the linear subvarieties S:x"=constant if the equation P$_{m}$(x, .zeta.$_{1}$, .xi.')=0 for .zeta.$_{1}$ has only real roots when .xi.'is real and .xi."=0, where P$_{m}$ is the principal symbol of pp. Limiting to the case of operators with constant coefficients, A. Kaneko proposed a new sharper condition when S is a hyperplane [3]. In this paper, we generalize this condition to the case of general linear subvariety S and show that it is sufficient for the solvability of Cauchy problem for the hyperfunction Cauchy data which contains variables parallel to S as holomorphic parameters.blem for the hyperfunction Cauchy data which contains variables parallel to S as holomorphic parameters.

  • PDF

RIGIDITY OF PROPER HOLOMORPHIC MAPS FROM Bn+1 TO B3n-1

  • Wang, Sung-Ho
    • 대한수학회지
    • /
    • 제46권5호
    • /
    • pp.895-905
    • /
    • 2009
  • Let $B^{n+1}$ be the unit ball in the complex vector space $\mathbb{C}^{n+1}$ with the standard Hermitian metric. Let ${\Sigma}^n={\partial}B^{n+1}=S^{2n+1}$ be the boundary sphere with the induced CR structure. Let f : ${\Sigma}^n{\hookrightarrow}{\Sigma}^N$ be a local CR immersion. If N < 3n - 1, the asymptotic vectors of the CR second fundamental form of f at each point form a subspace of the CR(horizontal) tangent space of ${\Sigma}^n$ of codimension at most 1. We study the higher order derivatives of this relation, and we show that a linearly full local CR immersion f : ${\Sigma}^n{\hookrightarrow}{\Sigma}^N$, N $\leq$ 3n-2, can only occur when N = n, 2n, or 2n + 1. As a consequence, it gives an extension of the classification of the rational proper holomorphic maps from $B^{n+1}$ to $B^{2n+2}$ by Hamada to the classification of the rational proper holomorphic maps from $B^{n+1}$ to $B^{3n+1}$.

THE EXTENSION OF SOLUTIONS FOR THE CAUCHY PROBLEM IN THE COMPLEX DOMAIN II

  • Lee, Eun-Gu;Kim, Dohan
    • 대한수학회보
    • /
    • 제30권1호
    • /
    • pp.29-34
    • /
    • 1993
  • J. Leray [7] proposed a sufficient condition ofr the solvability of the Cauchy problem on the initial hyperplane x$_{1}$=0 with Cauchy data which are holomorphic with respect to the variables parallel to some analytic subvariety S of the initial hyperplane. Limiting the problem to the case of operators with constant coefficients, A. Kaneko [2] proposed a new sharper sufficient condition. Later we generalized this condition and showed that it is necessary and sufficient for the solvability of the Cauchy problem for the hyperfunction Cauchy data and the distribution Cauchy data which contain variables parallel to S as holomorphic parameters in [5, 6]. In this paper, we extend the results in [6] to the case of operators with variable coefficients and show that it is sufficient for the solvability of the Cauchy problem for the hyperfunction Cauchy data. Our main theorem can be considered as an example of a deep theorem on micro-hyperbolic systems by Kashiwara-Schapira [4] and we give a direct proof based on an elementary sweeping out procedure developed in Kaneko [3].

  • PDF

SOLUTION TO ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS IN WEAKLY q-CONVEX DOMAINS

  • Saber, Sayed
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.409-421
    • /
    • 2018
  • Let X be a complex manifold of dimension n $n{\geqslant}2$ and let ${\Omega}{\Subset}X$ be a weakly q-convex domain with smooth boundary. Assume that E is a holomorphic line bundle over X and $E^{{\otimes}m}$ is the m-times tensor product of E for positive integer m. If there exists a strongly plurisubharmonic function on a neighborhood of $b{\Omega}$, then we solve the ${\bar{\partial}}$-problem with support condition in ${\Omega}$ for forms of type (r, s), $s{\geqslant}q$ with values in $E^{{\otimes}m}$. Moreover, the solvability of the ${\bar{\partial}}_b$-problem on boundaries of weakly q-convex domains with smooth boundary in $K{\ddot{a}}hler$ manifolds are given. Furthermore, we shall establish an extension theorem for the ${\bar{\partial}}_b$-closed forms.