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SECOND MAIN THEOREM FOR HOLOMORPHIC CURVES

INTO ALGEBRAIC VARIETIES WITH THE MOVING

TARGETS ON AN ANGULAR DOMAIN

Jiali Chen and Qingcai Zhang

Abstract. In this paper, we will prove the second main theorem for
holomorphic curves intersecting the moving hypersurfaces in subgeneral

position with index on an angular domain. Our results are an extension of

the previous second main theorems for holomorphic curves with moving
targets on an angular domain.

1. Introduction

In 1925, Nevanlinna [8] established the second main theorem for meromor-
phic function on complex plane. In 1933, H. Cartan [1] proved the second main
theorem for linearly nondegenerate holomorphic curves from complex plane
into complex projective space intersecting hyperplanes in general position. Af-
ter that, second main theorems have been established for holomorphic curves
into complex projective spaces intersecting fixed or moving targets [9,11,14,15].
Ru [12] proved a second main theorem for algebraically nondegenerate holomor-
phic curves into Pn(C) intersecting fixed hypersurfaces in 2004. S. D. Quang
[10] obtained a second main theorem with truncated counting functions for
algebraically nondegenerate meromorphic mappings from Cm into Pn(C) in-
tersecting a set of slowly moving hypersurfaces in N -subgeneral position. In
2009, Ru [13] extended the second main theorem for holomorphic mappings
into complex projective variety intersecting fixed hypersurfaces in general posi-
tion. Recently, Dethloff and Tan [4] further researched the case for holomorphic
curves into projective variety with moving hypersurfaces and proved the fol-
lowing second main theorem.

Theorem 1.1 ([4]). Let V ⊂ Pn(C) be an irreducible (possibly singular) variety
of dimension `, and let f be a nonconstant holomorphic map of C into V. Let
Q = {Q1, . . . , Qq} be a set of homogeneous polynomials in Kf [x0, . . . , xn] in
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general position with degQj = dj ≥ 1. Assume that f is algebraically non-
degenerate over KQ. Then for any ε > 0,

‖ (q − `− 1− ε)Tf (r) ≤
q∑
j=1

1

dj
Nf (r,Qj).

In this paper, a notation “ ‖ ” in the inequality means that the inequality
holds for r ∈ (1,∞) outside a set with measure finite.

Ji-Yan-Yu [7] introduced the new concept of subgeneral position with index
to improve the second main theorem interesting moving hypersurface targets.
According to [7], Xie-Cao [18] gave a similar definition for moving hypersurfaces
in N -subgenerate position with index κ.

Definition 1 ([18]). Let V be an algebraic subvariety of Pn(C). Let {D1, . . .,
Dq} be a family of moving hypersurfaces which coefficients are defined on
angular domain into Pn(C). Let N and κ be two position integers such that
N ≥ dimV ≥ κ.

(a) The hypersurfaces {D1, . . . , Dq} are said to be in general position (or
say in weakly general position) in V if there exists z ∈ Ω̄(α, β) for any subset
I ⊂ {1, . . . , q} with ]I ≤ dimV + 1,

codim

(⋂
i∈I

Di(z) ∩ V

)
≥ ]I.

(b) The hypersurfaces {D1, . . . , Dq} are said to be in N -subgeneral position
in V if there exists z ∈ Ω̄(α, β) for any subset I ⊂ {1, . . . , q} with ]I ≤ N + 1,

dim

(⋂
i∈I

Di(z) ∩ V

)
≤ N − ]I.

(c) The hypersurfaces {D1, . . . , Dq} are said to be in N -subgeneral position
with index κ in V if D1, . . . , Dq are in N -subgeneral position and if there exists
z ∈ Ω̄(α, β) for any subset I ⊂ {1, . . . , q} with ]I ≤ κ,

codim

(⋂
i∈I

Di(z) ∩ V

)
≥ ]I.

Here we set dim ∅ = −∞.

In 2019, Xie-Cao [18] combined the methods and the above definition to
obtain the following result which extends the second main theorem with moving
hypersurfaces in subgeneral position due to S. D. Quang [10].

Theorem 1.2 ([18]). Let V ⊂ Pn(C) be an irreducible algebraic subvariety
of dimension `. Let f : Cm → V be a nonconstant holomorphic map. Let
Q = {Q1, . . . , Qq} be a set of slowly moving hypersurfaces in N -subgeneral
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position with index κ in V with degQj = dj ≥ 1. Assume that f is algebraically
non-degenerate over KQ. Then for any ε > 0,

‖
(
q − (1 +

N − `
max{1,min{N − `, κ}}

)(`+ 1)− ε
)
Tf (r)

≤
q∑
j=1

1

dj
Nf (r,Qj) + o(Tf (r)).

For 0 ≤ α < β ≤ 2π, by Ω(α, β) we denote the angular domain Ω(α, β) :=
{z : α < arg z < β} and by Ω̄(α, β) its closure. The behavior of a function
meromorphic in an angle has been investigated in many references, such that
[5, 6, 17, 19]. In 2015, J. H. Zheng [20] established the value distribution of
holomorphic curves on an angular domain from the point of view of potential
theory and established the first and second fundamental theorem corresponding
to those theorems of Ahlfors-Shimizu, Nevanlinna and Tsuji on meromorphic
functions in an angular domain. In 2017, N. V. Thin [16] proved some fun-
damental theorems for holomorphic curves on Ω̄(α, β) intersecting finite set of
fixed hyperplanes in general position and finite set of fixed hypersurfaces in
general position on complex projective variety with the level of truncation. In
2018, the author [2] proved this result to the following.

Theorem 1.3 ([2]). Let V ⊂ Pn(C) be an irreducible (possibly singular) variety
of dimension `. Let f : Ω̄(α, β)→ V be a non-constant holomorphic map. Let
Q = {Q1, . . . , Qq} be a set of slowly moving hypersurfaces in general position
in V with degQj = dj ≥ 1. Assume that f is algebraically non-degenerate over
KQ. Then for any ε > 0,

‖ (q − `− 1− ε)Sαβ,f (r) ≤
q∑
j=1

1

dj
Cαβ,f (r,Qj) +Rα,β(r, f),

Rα,β(r, f) is the error term with the estimate

Rα,β(r, f) ≤ K(log+ Sα−ε,β+ε;f (r) + log+ r + 1),

where K is a constant depending on ε.

Thus, it is natural to ask how about using the concept of subgeneral position
with index to second main theorems on an angular domain. Motivated by this
problem, the main purpose of this paper is to adopt their methods [4, 10, 18],
and obtain the second theorem for holomorphic curves on an angular domain
intersecting moving hypersurfaces targets in N -subgeneral position with index
κ, which is an improvement and an extension of the above theorems.

Now, we state our main theorems which are an improvement and extension
of the results of Zheng [20] concerning moving hypersurfaces targets on an
angular domain. Theorem 1.3 is just the following result for the special case
whenever N = dimV and κ = 1.
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Theorem 1.4. Let V ⊂ Pn(C) be an irreducible algebraic subvariety of di-
mension `. Let f : Ω̄(α, β) → V be a non-constant holomorphic map. Let
Q = {Q1, . . . , Qq} be a set of slowly moving hypersurfaces in N -subgeneral po-
sition with index κ in V with degQj = dj ≥ 1. Assume that f is algebraically
non-degenerate over KQ. Then for any ε > 0,

‖
(
q − (1 +

N − `
max{1,min{N − `, κ}}

)(`+ 1)− ε
)
Sαβ,f (r)

≤
q∑
j=1

1

dj
Cαβ,f (r,Qj) +Rα,β(r, f).

When V = Pn(C), we have the following second main theorem with trun-
cated counting function.

Theorem 1.5. Let f : Ω̄(α, β)→ Pn(C) be a non-constant holomorphic map.
Let Q = {Q1, . . . , Qq} be a set of slowly moving hypersurfaces in N -subgeneral
position with index κ with degQj = dj ≥ 1. Assume that f is algebraically
non-degenerate over KQ. Then for any ε > 0,

‖
(
q − (1 +

N − n
max{1,min{N − n, κ}}

)(n+ 1)− ε
)
Sαβ,f (r)

≤
q∑
j=1

1

dj
C

[M0]
αβ,f (r,Qj) +Rα,β(r, f),

where

M0 :=

(
M + n
n

)
p

 M + n
n

 M + n
n

−1

 q
n

−2

0 − 1,

with

M := (n+ 1)d+ 2(1 +
N − n

max{1,min{N − n, κ}}
)(n+ 1)3I(ε−1)d,

d := lcm(d1, . . . , dq) is the least common multiple of all {dj}, and

p0 :=


(
M + n
n

)((
M + n
n

)
− 1

)(
q
n

)
− 1

log(1 + ε
3(n+1)(1+ N−n

max{1,min{N−n,κ}} )
)


2

.

Here, by I(x) we denote the smallest integer which is not less than x.

By Theorem 1.5, we easily deduce the following corollary whenever κ = 1.

Corollary 1.6. Let f : Ω̄(α, β)→ Pn(C) be a non-constant holomorphic map.
Let Q = {Q1, . . . , Qq} be a set of slowly moving hypersurfaces in N -subgeneral
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position with degQj = dj ≥ 1. Assume that f is algebraically non-degenerate
over KQ. Then for any ε > 0,

‖ (q − (N − n+ 1)(n+ 1)− ε)Sαβ,f (r)

≤
q∑
j=1

1

dj
C

[M0]
αβ,f (r,Qj) +Rα,β(r, f),

where

M0 :=

(
M + n
n

)
p

 M + n
n

 M + n
n

−1

 q
n

−2

0 − 1,

with
M := (n+ 1)d+ 2(N − n+ 1)(n+ 1)3I(ε−1)d,

d := lcm(d1, . . . , dq) is the least common multiple of all {dj}, and

p0 :=


(
M + n
n

)((
M + n
n

)
− 1

)(
q
n

)
− 1

log(1 + ε
3(n+1)(N−n+1) )


2

.

If dj = 1, note that the hyperplans are in general position when N = n and
κ = 1. The following result can be obtained immediately.

Corollary 1.7. Let f : Ω̄(α, β)→ Pn(C) be a non-constant holomorphic map.
Let H = {H1, . . . ,Hq} be a set of slowly moving hyperplanes in general position.
Assume that f is algebraically non-degenerate over KH. Then for any ε > 0,

‖ (q − n− 1− ε)Sαβ,f (r) ≤
q∑
j=1

Cαβ,f (r,Hj) +Rα,β(r, f).

The remainder of this paper is organized as follows. In the next section,
we will introduce some basic notions and auxiliary results from Nevanlinna
theory on an angular domain. In Section 3 and Section 4, we give the proofs
of Theorem 1.3 and Theorem 1.5. The methods and techniques to prove the
main theorems by Dethloff-Tan [4], Quang [10], Ji-Yan-Yu [7] and Xie-Cao [18]
are used in this paper.

2. Preliminaries and lemmas

We consider the set

Ω(α, β; r) = Ω(α, β) ∩ {1 <| z |< r}.
Let f be a meromorphic function on the angle Ω̄(α, β; r), 0 < β − α ≤ 2π,

1 ≤ r <∞. We recall that

Aαβ(r, f) =
k

π

∫ r

1

(
1

tk
− tk

r2k
)[log+ |f(teiα)|+ log+ |f(teiβ)|]dt

t
;
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Bαβ(r, f) =
2k

πrk

∫ β

α

log+ |f(reiϕ)| · sin(k(ϕ− α))dϕ;

Cαβ(r, f) = 2k

∫ r

1

cαβ(r, f)(
1

tk
+

tk

r2k
)
dt

t

= 2
∑

1≤ρn≤r,α≤ψn≤β

(
1

ρkn
− ρkn
r2k

) sin k(ψn − α),

where cαβ(r, f) =
∑

1≤ρn≤r,α≤ψn≤β sin k(ψn−α), and ρne
iϕn are poles of f(z)

counting with multiplicity. We denote Sαβ,f (r) by the angular Nevanlinna
characteristics on Ω̄(α, β; r) and define it as follows:

Sαβ,f (r) = Aαβ(r, f) +Bαβ(r, f) + Cαβ(r, f).

Now we introduce the Nevanlinna characteristic, counting function and prox-
imity function of holomorphic curve in an angular domain.

Let f : Ω̄(α, β) → Pn(C) be a holomorphic curve. Let f = (f0 : · · · : fn)
be a reduced representation of f , where f0, . . . , fn are holomorphic functions
and without common zeros in Ω̄(α, β). Let Q be a homogeneous polynomial
of degree of d in the variables x0, . . . , xn with coefficients which are holomor-
phic functions without common zero on Ω̄(α, β). Assume that Q(f) 6≡ 0. The
counting function Cαβ,f (r,Q) of f with respect to Q is defined as

Cαβ,f (r,Q) = 2
∑

1≤ρn≤r,α≤ψn≤β

(
1

ρkn
− ρkn
r2k

) sin k(ψn − α),

where the ρne
iϕn are zeros of Q(f) in Ω̄(α, β) counting with multiplicity.

Let δ be a positive integer, the truncated counting function of f is defined
by

C
[δ]
αβ,f (r,Q) = 2

∑
1≤ρn≤r,α≤ψn≤β,

min{ordQ(f)(ρne
iϕn ),δ}

(
1

ρkn
− ρkn
r2k

) sin k(ψn − α),

where any zero of multiplicity greater than δ of Q(f) in Ω̄(α, β) is “truncated”
and counted as if it only had multiplicity δ.

The angular proximity function of f with respect to Q is defined as following:

Aαβ,f (r,Q) =
k

π

∫ r

1

(
1

tk
− tk

r2k
) log

‖f(teiα)‖d‖f(teiβ)‖d

|Q(f)(teiα)Q(f)(teiβ)|
dt

t

and

Bαβ,f (r,Q) =
2k

πrk

∫ β

α

log
‖f(reiϕ)‖d

|Q(f)(reiϕ)|
sin(k(ϕ− α))dϕ,

where ‖f(z)‖ = max{|f0(z)|, . . . , |fn(z)|} and d is the degree of Q.

Lemma 2.1 (First Main Theorem, [16, Theorem 1]).

dSαβ,f (r) = Aαβ,f (r,Q) +Bαβ,f (r,Q) + Cαβ,f (r,Q).
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We say that a meromorphic function ϕ on Ω̄(α, β) is “small” with respect
to f if Sαβ,ϕ(r) = o(Sαβ,f (r)) as r →∞.

We denote by M (resp. Kf ) the field of all meromorphic functions (resp.
small meromorphic functions with respect to f) on Ω̄(α, β).

For a positive integer d, we set

Td := {(i0, . . . , in) ∈ Nn+1
0 : i0 + · · ·+ in = d}.

Let Q = {Q1, . . . , Qq} be a set of q ≥ n + 1 homogeneous polynomials in
Kf [x0, . . . , xn], degQj = dj ≥ 1. We write

Qj =
∑
I∈Tdj

ajIx
I (j = 1, . . . , q),

where xI = xi00 · · ·xinn for x = (x0, . . . , xn) and I = (i0, . . . , in). For each j,
there exists ajIj , one of the coefficients in Qj , such that ajIj 6≡ 0. We fix ajIj
and set ãjI =

ajI
ajIj

and

Q̃j =
∑
I∈Tdj

ãjIx
I (j = 1, . . . , q)

which is a homogenerous polynomial in KQ[x0, . . . , xn]. The moving hypersur-
faces Q = {Q1, . . . , Qq} are said to be “slowly” with respect to f if S

αβ,
ajI
ajIj

(r)

= o(Sαβ,f (r)), i.e.,
ajI
ajIj
∈ Kf .

Let KQ be the smallest subfield of meromorphic function field M which
contains C and all

ajIs
ajIt

, where ajIt 6≡ 0, j ∈ {1, . . . , q}, It, Is ∈ Tdj .
Denote by Ωf the set of all non-negative functions h : Ωα,β → [0,+∞],

which are of the form |u1|+···+|uk|
|v1|+···+|vl| , where k, l ∈ N, ui, vj ∈ Kf \ {0}. Then, if

h ∈ Ωf we have

k

π

∫ r

1

(
1

tk
− tk

r2k
)[log+ |h(teiα)|+ log+ |h(teiβ)|]dt

t

+
2k

πrk

∫ β

α

log+ |h(reiϕ)| · sin(k(ϕ− α))dϕ

= o(Sαβ,f (r)).

Lemma 2.2 ([4,10]). Assume that Q = {Q1, . . . , Qq} is in N -subgeneral posi-
tion with degQj = dj and d is the lcm of the Q′js. Then for any Qj1 , . . . , QjN+1

∈ Q, there exist functions h1, h2 ∈ Ωf\{0} such that,

h2 · ‖f‖d ≤ max
i∈{1,...,N+1}

|Qji(f0, . . . , fn)| ≤ h1 · ‖f‖d.

Lemma 2.3 ([18, Lemma 3.3]). Let Q̃1, . . . , Q̃N+1 be homogeneous polynomials
in KQ[x0, . . . , xn] of the same degree d ≥ 1 in (weakly) N -subgeneral position
with index κ in V. For each point a ∈ Ω̄(α, β) satisfying the following conditions:

(i) the coefficients of Q̃1, . . . , Q̃N+1 are holomorphic at a,
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(ii) Q̃1(a), . . . , Q̃N+1(a) have no non-trivial common zeros,

(iii) dimV (a) = `, then there exist homogeneous polynomials P̃1(a)=Q̃1(a),

. . ., P̃κ(a) = Q̃κ(a), P̃κ+1(a), . . . , P̃`+1(a) ∈ C[x0, . . . , xn] with

P̃t(a) =

N−`+t∑
j=κ+1

ctjQ̃j(a), ctj ∈ C, t ≥ κ+ 1,

such that (
`+1⋂
t=1

P̃t(a)

)
∩ V = ∅.

Let V be a subvariety in Pn(C) of dimension ` defined by the homogeneous
ideal I(V ) ⊂ C[x0, . . . , xn]. Denote by IKQ(V ) the ideal in KQ[x0, . . . , xn]
generated by I(V ). We say that f is algebraically nondegenerate over KQ if
there is no homogeneous polynomial Q ∈ KQ[x0, . . . , xn] \ IKQ(V ) such that
Q(f) ≡ 0.

For a positive integer M, let KQ[x0, . . . , xn]M be the vector space of homoge-
neous polynomials of degree M, and let IKQ(V )M :=IKQ(V )∩KQ[x0, . . . , xn]M .

The Hilbert polynomial HV (M) of V is defined by

HV (M) := dimKQ
KQ[x0, . . . , xn]M
IKQ(V )M

.

By the theory of Hilbert polynomials, we have the following fact:

HV (M) =
deg V ·M `

`!
+O(M `−1).

Definition 2 ([4, 12]). For each I = (i1, . . . , i`) ∈ N`0 and M ∈ N0 with
M ≥ d‖I‖, denote by LIM the set of all γ ∈ KQ[x0, . . . , xn]M−d‖I‖ such that

P i1i,1 · · ·P
i`
i,`γ −

∑
E=(e1,...,e`)>I

P e1i,1 · · ·P
e`
i,`γE ∈ IKQ(V )M

for some γE ∈ KQ[x0, . . . , xn]M−d‖E‖.

Denote by LI the homogeneous ideal in KQ[x0, . . . , xn] generated by

∪M≥d‖I‖LIM.

Remark 2.4 ([4,12]). (i) LIM is a KQ-vector sub-space of KQ[x0, . . . , xn]M−d‖I‖,

and (I(V ), Pi,1, . . . , Pi,`)M−d‖I‖ ⊂ LIM, where (IQ(V ), Pi,1, . . . , Pi,`) is the
ideal in KQ[x0, . . . , xn] generate by IQ(V ) ∪ {Pi,1, . . . , Pi,`}.

(ii) For any γ ∈ LIM and P ∈ KQ[x0, . . . , xn]k, we have γ · P ∈ LIM+k.

(iii) LI ∩ KQ[x0, . . . , xn]M−d‖I‖ = LIM.

(iv) KQ[x0,...,xn]
LI is graded module over the graded ring KQ[x0, . . . , xn].

Set

mI
M := dimKQ

KQ[x0, . . . , xn]M−d‖I‖

LIM
.
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For each positive integer M, denote by τM the set of all I := (i1, . . . , i`) ∈ N`0
with M − d‖I‖ ≥ 0. Let γI1, . . . , γImIM ∈ KQ[x0, . . . , xn]M−d‖I‖ such that they

form a basis of the KQ-vector space
KQ[x0,...,xn]M−d‖I‖

LIM
.

Lemma 2.5 ([4,12]). {[P i1i,1 · · ·P
i`
i,`·γI1], . . ., [P i1i,1 · · ·P

i`
i,`·γImIM ], I = (i1, . . . , i`)

∈ τM} is a basis of the KQ-vector space
KQ[x0,...,xn]M−d‖I‖

IKQ (V )M
.

Using Definition 2 and Lemma 2.5 by the arguments as [4], we have the
following lemma.

Lemma 2.6 ([4, Lemma 2.11]). For all M � 0 be an integer divisible by d,
there are homogeneous polynomials φ1, . . . , φHV (M) in KQ[x0, . . . , xn]M such

that they form a basis of the K-vector space KQ[x0,...,xn]M
IKQ (V )M

, and

HV (M)∏
j=1

φj − (Pi,1 · · ·Pi,`)
deg V ·M`+1

d·(`+1)!
−u(M) · P ∈ IK(V )M ·HV (M),

where u(M) is a function in M satisfying u(M) ≤ O(M `) and P is a homoge-
neous polynomial of degree

M ·HV (M)− ` · deg V ·M `+1

(`+ 1)!
+ `d · u(M) =

deg V ·M `+1

(`+ 1)!
+O(M `).

Lemma 2.7 ([16, Lemma 6]). Let f : Ω̄(α, β) → Pn(C) be a linearly non-
degenerate holomorphic curve and H1, . . . ,Hq be hyperplanes in Pn(C) in gen-
eral position. Then we have

‖ k
π

∫ r

1

(
1

tk
− tk

r2k
)(max

K
log

∏
k∈K

(
‖f‖
|Hk(f)|

(teiα))

+ max
K

log
∏
k∈K

(
‖f‖
|Hk(f)|

(teiβ)))
dt

t

+
2k

πrk

∫ β

α

max
K

log
∏
k∈K

(
‖f‖
|Hk(f)|

(reiϕ)) · sin(k(ϕ− α))dϕ

≤ (n+ 1)Sαβ,f (r)− Cαβ,W (r, 0) +Rα,β(r, f),

where W is the Wronskian of f.

3. Proof of Theorem 1.4

Replacing Qj by Q
d
dj , where d is the lcm of the Q′js, we may assume that

the polynomials Q1, . . . , Qq have the same degree d. We denote by I the set of
all permutations of the set {1, . . . , q}.

For a fixed point z ∈ Ω̄(α, β) \ ∪qi=1Q̃i(f)−1{0}, we may assume that there
exists Ii = (Ii(1), . . . , Ii(q)) ∈ I such that

|Q̃Ii(1)(f)(z)| ≤ |Q̃Ii(2)(f)(z)| ≤ · · · ≤ |Q̃Ii(q)(f)(z)|.
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For Ii ∈ I, by Lemma 2.3, we denote the hypersurfaces Pi,1, . . . , Pi,`+1 with

respect to the hypersurfaces Q̃Ii(1), . . . , Q̃Ii(N+1). It is easy to see that there

exists a positive function h1 ∈ Ωf , for all z ∈ Ω̄(α, β) \ ∪qi=1Q̃i(f)−1{0}, such
that

(1) |Pi,t(f)(z)| ≤ h1(z) max
κ+1≤j≤N−`+t

|Q̃Ii(j)(f)(z)| = h1(z)|Q̃Ii(N−`+t)(f)(z)|

for κ+ 1 ≤ t ≤ `+ 1.
Since Q1, . . . , Qq are in N -subgeneral position in V, by Lemma 2.2, there

exists h2 ∈ Ωf for all Ii ∈ I, such that

h2(z)‖f(z)‖d ≤ max
1≤j≤N+1

|Q̃Ii(j)(f)(z)| = |Q̃Ii(N+1)(f)(z)|.

Therefore, combining this with (1), we get

q∏
j=1

‖f(z)‖d

|Q̃j(f)(z)|
≤ 1

hq−N2 (z)

N∏
j=1

‖f(z)‖d

|Q̃Ii(j)(f)(z)|

=
1

hq−N2 (z)

κ∏
j=1

‖f(z)‖d

|Q̃Ii(j)(f)(z)|
·
N−`+κ∏
j=κ+1

‖f(z)‖d

|Q̃Ii(j)(f)(z)|

·
N∏

j=N−`+κ+1

‖f(z)‖d

|Q̃Ii(j)(f)(z)|

≤ h3(z)

κ∏
j=1

‖f(z)‖d

|Pi,j(f)(z)|
·
N−`+κ∏
j=κ+1

‖f(z)‖d

|Q̃Ii(j)(f)(z)|

·
∏̀

j=κ+1

‖f(z)‖d

|Pi,j(f)(z)|
,(2)

where h3 = 1

hq−N2 (z)
· h`−κ1 (z). By Lemma 2.2, there exists a function h4 ∈ Ωf

such that |Pi,j(f)(z)| ≤ h4(z)‖f(z)‖d.
If N − ` ≤ κ, by (2), we have

q∏
j=1

‖f(z)‖d

|Q̃j(f)(z)|
≤ h3(z)

κ∏
j=1

‖f(z)‖d

|Pi,j(f)(z)|
·
N−`∏
j=1

‖f(z)‖d

|Pi,j(f)(z)|
·
∏̀

j=κ+1

‖f(z)‖d

|Pi,j(f)(z)|

≤ h3(z) · hκ+`−N
4 (z)

κ∏
j=1

‖f(z)‖d

|Pi,j(f)(z)|
·
N−`∏
j=1

‖f(z)‖d

|Pi,j(f)(z)|

·
κ∏

j=N−`+1

‖f(z)‖d

|Pi,j(f)(z)|
·
∏̀

j=κ+1

‖f(z)‖d

|Pi,j(f)(z)|
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≤ h5(z)

 κ∏
j=1

‖f(z)‖d

|Pi,j(f)(z)|

2

·

 ∏̀
j=κ+1

‖f(z)‖d

|Pi,j(f)(z)|

2

= h5(z)

∏̀
j=1

‖f(z)‖d

|Pi,j(f)(z)|

2

,(3)

where h5(z) = h3(z) · h2`−N
4 (z) ∈ Ωf .

If N − ` ≥ κ, we have
q∏
j=1

‖f(z)‖d

|Q̃j(f)(z)|

≤ h3(z)

κ∏
j=1

‖f(z)‖d

|Pi,j(f)(z)|
·

 κ∏
j=1

‖f(z)‖d

|Pi,j(f)(z)|


N−`
κ

·
∏̀

j=κ+1

‖f(z)‖d

|Pi,j(f)(z)|

= h3(z)

 κ∏
j=1

‖f(z)‖d

|Pi,j(f)(z)|

1+N−`
κ

·
∏̀

j=κ+1

‖f(z)‖d

|Pi,j(f)(z)|

≤ h6(z)

 κ∏
j=1

‖f(z)‖d

|Pi,j(f)(z)|

1+N−`
κ

·

 ∏̀
j=κ+1

‖f(z)‖d

|Pi,j(f)(z)|

1+N−`
κ

= h6(z)

∏̀
j=1

‖f(z)‖d

|Pi,j(f)(z)|

1+N−`
κ

,(4)

where h6(z) = h3(z) · h
(`−κ)(N−`)

κ
4 (z) ∈ Ωf .

Thus by (3) and (4), we can obtain

q∏
j=1

‖f(z)‖d

|Q̃j(f)(z)|
≤ h

∏̀
j=1

‖f(z)‖d

|Pi,j(f)(z)|

1+ N−`
max{1,min{N−`,κ}}

,

where h = max{h5, h6} ∈ Ωf .
Then, we have

log

q∏
j=1

‖f(z)‖d

|Q̃j(f)(z)|

≤ log h+

(
1 +

N − `
max{1,min{N − `, κ}}

)
log

∏̀
j=1

‖f(z)‖d

|Pi,j(f)(z)|

 .(5)

Let M � 0 be an integer divisible by d. By Lemma 2.6, there are homo-
geneous polynomials φ1, . . . , φHV (M) in KQ[x0, . . . , xn] and there are functions
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u(M), v(M) ≤ O(M `) such that they form a basis of the KQ-vector space
KQ[x0,...,xn]
IKQ (V )M

, and

HV (M)∏
j=1

φj − (Pi,1 · · ·Pi,`)
deg V ·M`+1

d·(`+1)!
−u(M) · P ∈ IKQ(V )M ·HV (M),

where P is a homogeneous polynomial of degree deg V ·M`+1

(`+1)! + v(M). On the

other hand, for any Q ∈ IKQ(V )M ·HV (M), we have Q(f) ≡ 0. Therefore

HV (M)∏
j=1

φj(f) = (Pi,1(f) · · ·Pi,`(f))
deg V ·M`+1

d·(`+1)!
−u(M) · P (f).

Since the coefficients of P are small functions, there exists g ∈ Ωf such that

|P (f)| ≤ ‖f‖degP · g = ‖f‖
deg V ·M`+1

(`+1)!
+v(M) · g.

Therefore,

log(

HV (M)∏
j=1

|φj(f)|) ≤
(

deg V ·M `+1

d · (`+ 1)!
− u(M)

)
log |Pi,1(f) · · ·Pi,`(f)|

+ log+ g +

(
deg V ·M `+1

(`+ 1)!
+ v(M)

)
log ‖f‖.

This implies that there are functions ω1(M), ω2(M) ≤ O( 1
M ) such that

log |Pi,1(f) · · ·Pi,`(f)| ≥
(

d · (`+ 1)!

deg V ·M `+1
− ω1(M)

M `+1

)
· log(

HV (M)∏
j=1

|φj(f)|)

− 1

M `+1
log+ g̃ − (d+ ω2(M)) log ‖f‖(6)

for some g̃ ∈ Ωf .
We fix homogeneous polynomials Φ1, . . . ,ΦHV (M) ∈ KQ[x0, . . . , xn]M such

that they form a basis of the KQ-vector space KQ[x0,...,xn]M
IKQ (V )M

. Then there exist

linear homogeneous polynomials L1, . . . , LHV (M) ∈ KQ[y1, . . . , yHV (M)] such
that they are linearly independent over KQ and

(7) φj − Lj(Φ1, . . . ,ΦHV (M)) ∈ IKQ(V )M for all j ∈ {1, . . . ,HV (M)}.

There exists a meromorphic function ϕ such that Cαβ(r, ϕ) = o(Sαβ,f (r)),

Cαβ(r, 1
ϕ ) = o(Sαβ,f (r)) and Φ1(f)

ϕ , . . . ,
ΦHV (M)(f)

ϕ are holomorphic and have

no common zeros. Let F : Ω̄(α, β) → PHV (M)−1(C) be the holomorphic map

with the reduced representation F := (Φ1(f)
ϕ : · · · : ΦHV (M)(f)

ϕ ). Since f is alge-

braically non-degenerate over KQ, and since the polynomials Φ1, . . . ,ΦHV (M)

form a basis of KQ[x0,...,xn]M
IKQ (V )M

, we get that F is linearly non-degenerate over KQ.
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As a corollary, F is linearly non-degenerate over the field over C generated by
all coefficients of L

′

js. We can see that

(8) Sαβ,F (r) ≤M · Sαβ,f (r) + o(Sαβ,f (r)).

In order to simplify the writing of the following series of inequalities, put

A(M) := d·(`+1)!
deg V ·M`+1 − ω1(M)

M`+1 . By (7), for all j ∈ {1, . . . ,HV (M)} we have

log |φj(f)| = log |Lj(F )|+ log |ϕ|.

Hence, by (6), we get

log(|Pi,1(f)| · · · |Pi,`(f)|)

≥ A(M) ·

HV (M) · log |ϕ|+ log(

HV (M)∏
j=1

|Lj(F )|)


− 1

M `+1
log+ g̃ − (d+ ω2(M)) log ‖f‖

≥ A(M) · log

HV (M)∏
j=1

|Lj(F )|

+A(M) ·HV (M) · log |ϕ|

− log+ g̃ − (d+ ω2(M)) log ‖f‖.(9)

Then, by (9), we have

log

∏̀
j=1

‖f(z)‖d

|Pi,j(f)(z)|

 ≤ log ‖f‖`d −A(M) · log

HV (M)∏
j=1

|Lj(F )|

+ log+ g̃

−A(M) ·HV (M) · log |ϕ|+ (d+ ω2(M)) log ‖f‖
= ((`+ 1)d+ ω2(M)) log ‖f‖ −A(M) ·HV (M) log ‖F‖

+A(M) · log

HV (M)∏
j=1

‖F‖
|Lj(F )|


−A(M) ·HV (M) · log |ϕ|+ log+ g̃.(10)

Then, combining (5) and (10), we obtain

log

q∏
j=1

‖f(z)‖d

|Q̃j(f)(z)|

≤
(

1 +
N − `

max{1,min{N − `, κ}}

)
((`+ 1)d+ ω2(M)) log ‖f‖

−
(

1 +
N − `

max{1,min{N − `, κ}}

)
A(M) ·HV (M) log ‖F‖
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+A(M)

(
1 +

N − `
max{1,min{N − `, κ}}

)
· log

HV (M)∏
j=1

‖F‖
|Lj(F )|


−
(

1 +
N − `

max{1,min{N − `, κ}}

)
·A(M) ·HV (M) · log |ϕ|

+

(
1 +

N − `
max{1,min{N − `, κ}}

)
log+ g̃ + log h.(11)

By applying Lemma 2.7 to the holomorphic map F : Ω̄(α, β)→ PHV (M)−1(C)
and the system of linear polynomials L1, . . . , LHV (M) ∈ KQ[y1, . . . , yHV (M)],
we get:

‖ k
π

∫ r

1

(
1

tk
− tk

r2k
) log(

HV (M)∏
j=1

‖F‖
|Lj(F )|

(teiα))
dt

t

+
k

π

∫ r

1

(
1

tk
− tk

r2k
) log(

HV (M)∏
j=1

‖F‖
|Lj(F )|

(teiβ))
dt

t

+
2k

πrk

∫ β

α

log(

HV (M)∏
j=1

‖F‖
|Lj(F )|

(reiϕ)) · sin(k(ϕ− α))dϕ

≤ k

π

∫ r

1

(
1

tk
− tk

r2k
) max

K
log

∏
k∈K

(
‖F‖
|Lj(F )|

(teiα))
dt

t

+
k

π

∫ r

1

(
1

tk
− tk

r2k
) max

K
log

∏
k∈K

(
‖F‖
|Lj(F )|

(teiβ))
dt

t

+
2k

πrk

∫ β

α

max
K

log
∏
k∈K

(
‖F‖
|Lj(F )|

(reiϕ)) · sin(k(ϕ− α))dϕ

≤ HV (M)Sαβ,F (r) +Rα,β(r, F ),(12)

where maxK is taken over all subsets of the system of linear polynomials L1, . . . ,
LHV (M) ∈ KQ[y1, . . . , yHV (M)] such that these linear polynomials are linearly
independent over KQ. By integrating (11), we obtain

‖
q∑
j=1

Aαβ,f (r,Qj) +

q∑
j=1

Bαβ,f (r,Qj)

≤ d

(
1 +

N − `
max{1,min{N − `, κ}}

)
(`+ 1)Sαβ,f (r) + o(Sαβ,f (r))

−
(

1 +
N − `

max{1,min{N − `, κ}}

)
A(M) ·HV (M)(Cαβ(r, ϕ)− Cαβ(r,

1

ϕ
))

+

(
1 +

N − `
max{1,min{N − `, κ}}

)
A(M)
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[k
π

∫ r

1

(
1

tk
− tk

r2k
)(log

HV (M)∏
j=1

‖F‖
|Lj(F )|

(teiα) + log

HV∏
j=1

‖F‖
|Lj(F )|

(teiβ)
dt

t

+
2k

πrk

∫ β

α

log

HV (M)∏
j=1

‖F‖
|Lj(F )|

(reiϕ) · sin(k(ϕ− α))dϕ
]

−A(M) ·HV (M)

(
1 +

N − `
max{1,min{N − `, κ}}

)
Sαβ,F (r).

Combining above inequality with (8) and (12), we have (using that Cαβ(r, ϕ) =
o(Sαβ,f (r));Cαβ(r, 1

ϕ ) = o(Sαβ,f (r)), that A(M) · HV (M) ≤ O( 1
M ) and that

h̃ ∈ Ωf )

‖
q∑
j=1

Aαβ,f (r,Qj) +

q∑
j=1

Bαβ,f (r,Qj)

≤ d

(
1 +

N − `
max{1,min{N − `, κ}}

)
(`+ 1)Sαβ,f (r)

+A(M) ·HV (M)

(
1 +

N − `
max{1,min{N − `, κ}}

)
Sαβ,F (r)

−A(M) ·HV (M)

(
1 +

N − `
max{1,min{N − `, κ}}

)
Sαβ,F (r) +Rα,β(r, f)

≤ d

(
1 +

N − `
max{1,min{N − `, κ}}

)
(`+ 1)Sαβ,f (r) +Rα,β(r, f).

Therefore, by the first main theorem, Theorem 1.3 is proved.

4. Proof of Theorem 1.5

For Ii0 ∈ I, by Lemma 2.3, we denote the hypersurfaces Pi0,1, . . . , Pi0,n+1

with respect to the hypersurfaces Q̃Ii0 (1), . . . , Q̃Ii0 (N+1).

Similar to the argument of (5), we have

log

q∏
j=1

‖f(z)‖d

|Q̃j(f)(z)|

≤ log h+

(
1 +

N − n
max{1,min{N − n, κ}}

)
log

 n∏
j=1

‖f(z)‖d

|Pi0,j(f)(z)|

 .(13)

Now, for a positive integer M, we denote by VM the vector subspace of
KQ[x0, . . . , xn] which consists of all homogeneous polynomials of degree M
and zero polynomial. Denote by (Pi0,1, . . . , Pi0,n) the ideal in KQ[x0, . . . , xn]
generated by Pi0,1, . . . , Pi0,n.

We first introduce the following lemma.
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Lemma 4.1 ([3, Proposition 3.3]). Let {Pi}qi=1(q ≥ n + 1) be a set of ho-
mogeneous polynomials of common degree d ≥ 1 in Kf [x0, . . . , xn] in weakly
general position. Then for any nonnegative integer M and for any J :=
{j1, . . . , jn} ⊂ {1, . . . , q}, the dimension of vector space VM

(Pj1 ,...,Pjn )∩VM is equal

to the number of n-tuples (s1, . . . , sn) ∈ Nn0 such that s1 + · · · + sn ≤ M and
0 ≤ s1, . . . , sn ≤ d− 1. In particular, for all M ≥ n(d− 1), we have

dim
VM

(Pj1 , . . . , Pjn) ∩ VM
= dn.

Next, we continue to prove the theorem.
We consider M divisible by d. For each (i) = (i1, . . . , in) ∈ Nn0 with σ(i) =∑n
s=1 is ≤

M
d , we set

W
Ii0
(i) =

∑
(j)=(j1,...,jn)≥(i)

P j1i0,1 · · ·P
jn
i0,n
· VM−dσ(j).

Then we see that W
Ii0
(0,...,0) = VM and W

Ii0
(i) ⊃ W

Ii0
(j) if (i) < (j) in the lexico-

graphic order. So, W
Ii0
(i) is a filtration of VM .

Fix a number M large enough (chosen later). Set uM = dimVM = (M+n
n ).

We assume that

VM = W
Ii0
(i)1
⊃W Ii0

(i)2
⊃ · · · ⊃W Ii0

(i)K
,

where W
Ii0
(i)s+1

follows W
Ii0
(i)s

in the ordering and (i)K = (Md , 0, . . . , 0). It is

easy to see that K is the number of n-tuples (i1, . . . , in) with ij ≥ 0 and

i1 + · · ·+ in ≤ M
d . Then we have

K =

(
M
d + n
n

)
.

For each s ∈ {1, . . . ,K − 1} we set m
Ii0
s = dim

W
Ii0
(i)s

W
Ii0
(i)s+1

, and set m
Ii0
K = 1.

Then by Lemma 4.1, m
Ii0
s does not depend on {Pi0,1, . . . , Pi0,n} and s, but on

σ((i)s). We also note that

m
Ii0
s = dn

for all s with M − dσ((i)s) ≥ nd.
From the above filtration, we may choose a basis {ψIi01 , . . . , ψ

Ii0
uM } of VM such

that

{ψIi0
uM−(m

Ii0
s +···+m

Ii0
K )+1

, . . . , ψ
Ii0
uM }

is a basis of W
Ii0
(i)s

. For each s ∈ {1, . . . ,K} and l ∈ {uM − (m
Ii0
s + · · ·+m

Ii0
K ) +

1, . . . , uM − (m
Ii0
s+1 + · · ·+m

Ii0
K )}, we may write

ψ
Ii0
l = P i1si0,1 · · ·P

ins
i0,n

hl, where (i1s, . . . , ins) = (i)s, hl ∈W i0
M−dσ(i).
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Then we have

|ψIi0l (f)(z)| = |Pi0,1(f)(z)|i1s · · · |Pi0,n(f)(z)|ins |hl(f)(z)|

≤ cl|Pi0,1(f)(z)|i1s · · · |Pi0,n(f)(z)|ins‖f(z)‖M−dσ(i)

= cl

(
|Pi0,1(f)(z)|
‖f(z)‖d

)i1s
· · ·
(
|Pi0,n(f)(z)|
‖f(z)‖d

)ins
‖f(z)‖M ,

where cl ∈ Ωf , which is independent of f and z. This implies that

log

uM∏
l=1

|ψIi0l (f)(z)|

≤
K∑
s=1

m
Ii0
s

(
i1s log

|Pi0,1(f)(z)|
‖f(z)‖d

+ · · ·+ ins log
|Pi0,n(f)(z)|
‖f(z)‖d

)
+ uMM log ‖f(z)‖+ log cIi0 ,(14)

where cIi0 =
∑uM
l=1 cl ∈ Ωf , which does not depend on f and z.

We see that

K∑
s=1

m
Ii0
s iks =

M
d∑
l=0

∑
s|σ((i)s)=l

m(l)iks =

M
d∑
l=0

m(l)
∑

s|σ(is)=l

iks.

Note that, by the symmetry (i1, . . . , in) → (iσ1
, . . . , iσn) with σ ∈ S(n),∑

k|σ(i)=l iks does not depend on k. We set

A =:

K∑
s=1

m
Ii0
s iks, which is independent of k and I.

By (14), we obtain

log

uM∏
l=1

|ψIi0l (f)(z)| ≤ A

log

n∏
j=1

|Pi0,j(f)(z)|
‖f(z)‖d

+ uMM log ‖f(z)‖+ log cIi0 ,

that is

(15) A

log

n∏
j=1

‖f(z)‖d

|Pi0,j(f)(z)|

 ≤ log

uM∏
l=1

‖f(z)‖M

|ψIi0l (f)(z)|
+ log cI .

Combining (13) and (15), we have

(16) log

q∏
j=1

‖f(z)‖d

|Q̃j(f)(z)|
≤

1 + N−n
max{1,min{N−n,κ}}

A
log

uM∏
l=1

‖f(z)‖M

|ψIi0l (f)(z)|
+ log c0,

where c0 = h
∏
Ii0

(1 + c
(1+ N−n

max{1,min{N−n,κ}} )/A

Ii0
) ∈ Ωf .
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We now write

ψ
Ii0
l =

∑
J∈TM

c
Ii0
lJ x

J ∈ VM , c
Ii0
lJ ∈ K{Qi},

where TM is the set of all (n + 1)-tuples J = (j0, . . . , jn) with
∑n
s=0 js = M,

xJ = xj00 · · ·xjnn and l ∈ {1, . . . , uM}. For each l, we fix an index J
Ii0
l ∈ J such

that c
Ii0

lJ
Ii0
l

6≡ 0. Define

µ
Ii0
lJ =

c
Ii0
lJ

c
Ii0

lJ
Ii0
l

, J ∈ TM .

Set Φ = {µIi0lJ : Ii0 ⊂ {1, . . . , q}, ]Ii0 = n, 1 ≤ l ≤ M, J ∈ TM}. Note that
1 ∈ Φ. Let B = ]Φ. We see that

B ≤ uM
(
q
n

)((
M + n
n

)
− 1

)
=

(
M + n
n

)((
M + n
n

)
− 1

)(
q
n

)
.

For each positive integer l, we denote by L(Φ(l)) the linear span over C of
the set

Φ(l) = {γ1 · · · γl : γi ∈ Φ}.
It is easy to see that

dimL(Φ(l)) ≤ ]Φ(l) ≤
(
B + l − 1
B − 1

)
.

We may choose a positive integer p such that

p ≤ p0 :=

 B − 1

log(1 + ε
3(n+1)(1+ N−n

max{1,min{N−n,κ}} )
)

2

,

and
dimL(Φ(p+ 1))

dimL(Φ(p))
≤ 1 +

ε

3(n+ 1)(1 + N−n
max{1,min{N−n,κ}} )

.

Indeed, if dimL(Φ(p+1))
dimL(Φ(p)) > 1 + ε

3(n+1)(1+ N−n
max{1,min{N−n,κ}} )

for all p ≤ p0, we

have

dimL(Φ(p0 + 1)) ≥ (1 +
ε

3(n+ 1)(1 + N−n
max{1,min{N−n,κ}} )

)p0 .

Therefore, we have

log(1 +
ε

3(n+ 1)(1 + N−n
max{1,min{N−n,κ}} )

)
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≤ log dimL(Φ(p0 + 1))

p0
≤

log

(
B + p0

B − 1

)
p0

=
1

p0
log

B−1∏
i=1

p0 + i+ 1

i
<

(B − 1) log(p0 + 2)

p0

≤ B − 1
√
p0
≤

(B − 1) log(1 + ε
3(n+1)(1+ N−n

max{1,min{N−n,κ}} )
)

B − 1

= log(1 +
ε

3(n+ 1)(1 + N−n
max{1,min{N−n,κ}} )

).

This is a contradiction.
We fix a positive integer p satisfying the above condition. Put

s = dimL(Φ(p)) and t = dimL(Φ(p+ 1)).

Let b1, . . . , bt be a C-basis of L(Φ(p + 1)) such that b1, . . . , bs be a C-basis of
L(Φ(p)).

For each l ∈ 1, . . . , uM , we set

ψ̃
Ii0
l =

∑
J∈TM

µ
Ii0
lJ x

J .

For each J ∈ TM , we consider homogeneous polynomials φJ(x0, . . . , xn) =
xJ . Let F be a meromorphic mapping of Ω into PtuM−1(C) with a reduced
representation F = (hbiφJ(f))1≤i≤t,J∈TM , where h is a nonzero meromorphic
function on Ω. We see

Sαβ,F (r) = MSαβ,f (r) + o(Sαβ,f (r))

and

‖ Cαβ(r, h) + Cαβ(r,
1

h
) = o(Sαβ,f (r)).

Since f is algebraically nondegenerate over KQ, F is linearly nondegenerate
over C. We see that there exist nonzero functions c1, c2 ∈ Ωf such that

c1|h|‖f‖M ≤ ‖F‖ ≤ c2|h|‖f‖M .

For each l ∈ 1, . . . , uM , 1 ≤ i ≤ s, we consider the linear form Li0il in xJ such
that

hbiψ̃
Ii0
l (f) = L

Ii0
il (F ).

Since f is algebraically nondegenerate over KQ, it is easy to see that

{biψ̃
Ii0
l (f) : 1 ≤ i ≤ s, 1 ≤ l ≤ uM}

is linearly independent over C, and so is {LIi0il (F ) : 1 ≤ i ≤ s, 1 ≤ l ≤ uM}.
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For every point z which is not neither zero nor pole of any hbiψ̃
Ii0
l (f), we

also see that

s log

uM∏
l=1

‖f(z)‖M

|ψ̃Ii0l (f)(z)|
≤ log

∏
1≤i≤s

1≤l≤uM

‖F (z)‖
|hbiψ̃

Ii0
l (f)(z)|

+ log c3

≤ log
∏

1≤i≤s
1≤l≤uM

‖F (z)‖
|LIi0il (F )(z)|

+ log c4,

where c3, c4 are nonzero functions in Ωf , which do not depend on f and Ii0 ,
but on {Qi}qi=1.

Combining this inequality and (16), we obtain

log

q∏
j=1

‖f(z)‖d

|Q̃j(f)(z)|
≤

1 + N−n
max{1,min{N−n,κ}}

sA

max
Ii0

log
∏

1≤i≤s
1≤l≤uM

‖F (z)‖
|LIi0il (F )(z)|


+

1 + N−n
max{1,min{N−n,κ}}

sA
log c4 + log c0.(17)

Since F is linearly nondegenerate over C, by Lemma 2.7, we have

‖ k
π

∫ r

1

(
1

tk
− tk

r2k
)

max
Ii0

log
∏

1≤i≤s
1≤l≤uM

‖F‖
|LIi0il (F )|

(teiα)

 dt

t

+
k

π

∫ r

1

(
1

tk
− tk

r2k
)

max
Ii0

log
∏

1≤i≤s
1≤l≤uM

‖F‖
|LIi0il (F )|

(teiβ)

 dt

t

+
2k

πrk

∫ β

α

max
Ii0

log
∏

1≤i≤s
1≤l≤uM

‖F‖
|LIi0il (F )|

(reiϕ)

 · sin(k(ϕ− α))dϕ

≤ tuMSαβ,F (r)− Cαβ,W (r, 0) +Rα,β(r, f),(18)

where W is the Wronskian of F.
Integrating both sides of (17) and using (18), we have

‖ qdSαβ,f (r)−
q∑
j=1

Cαβ,f (r,Qj)

≤
tuM (1 + N−n

max{1,min{N−n,κ}} )

sA
Sαβ,F (r)
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−
1 + N−n

max{1,min{N−n,κ}}

sA
Cαβ,W (r, 0) +Rα,β(r, f).(19)

By using the method of Quang (to see [10]), we have the following inequality

q∑
j=1

Cαβ,f (r,Qj)−
1 + N−n

max{1,min{N−n,κ}}

sA
Cαβ,W (r, 0) ≤

q∑
j=1

C
[tuM−1]
αβ,f (r,Qj).

Combining this with (19), we can get

‖

(
q −

MtuM (1 + N−n
max{1,min{N−n,κ}} )

dsA

)
Sαβ,f (r)

≤
q∑
j=1

1

d
C

[tuM−1]
αβ,f (r,Qj) +Rα,β(r, f).(20)

Similar to the estimation of Quang and Xie-Cao [10,18], we have

(21)
MtuM
dsA

≤ n+ 1 +
ε

1 + N−n
max{1,min{N−n,κ}}

.

Combining (20) and (21), we obtain that

‖
(
q − (1 +

N − n
max{1,min{N − n, κ}}

)(n+ 1)− ε
)
Sαβ,f (r)

≤
q∑
j=1

1

d
C

[tuM−1]
αβ,f (r,Qj) +Rα,β(r, f).

Here we note that:

M := (n+ 1)d+ 2(1 +
N − n

max{1,min{N − n, κ}}
)(n+ 1)3I(ε−1)d,

p0 : =

 B − 1

log(1 + ε
3(n+1)(1+ N−n

max{1,min{N−n,κ}} )
)

2

≤


(
M + n
n

)((
M + n
n

)
− 1

)(
q
n

)
− 1

log(1 + ε
3(n+1)(1+ N−n

max{1,min{N−n,κ}} )
)


2

,

tuM − 1 ≤
(
M + n
n

)(
B + p
B − 1

)
− 1 ≤

(
M + n
n

)
pB−1 − 1

≤
(
M + n
n

)
p

 M + n
n

 M + n
n

−1

 q
n

−2

0 − 1 = M0.
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Then we have

‖
(
q − (1 +

N − n
max{1,min{N − n, κ}}

)(n+ 1)− ε
)
Sαβ,f (r)

≤
q∑
j=1

1

d
C

[M0]
αβ,f (r,Qj) +Rα,β(r, f).

The theorem is proved.

Acknowledgments. The authors thank the referees for their suggestions and
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