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SOLUTION TO 8-PROBLEM WITH SUPPORT CONDITIONS
IN WEAKLY ¢g-CONVEX DOMAINS

SAYED SABER

ABSTRACT. Let X be a complex manifold of dimension n > 2 and let
Q € X be a weakly g-convex domain with smooth boundary. Assume
that E is a holomorphic line bundle over X and E®™ is the m-times
tensor product of E for positive integer m. If there exists a strongly
plurisubharmonic function on a neighborhood of b2, then we solve the
d-problem with support condition in Q for forms of type (r, s), s > ¢ with
values in E®™ . Moreover, the solvability of the 8,-problem on boundaries
of weakly g-convex domains with smooth boundary in Kéahler manifolds
are given. Furthermore, we shall establish an extension theorem for the
dp-closed forms.

1. Introduction

In [3], Derridj considered the d-problem with exact support by using Carle-
man type estimates for smooth domains with plurisubharmonic defining func-
tions. In [14], Shaw has obtained a solution to this problem in a pseudo-convex
domain in C" with C! smooth boundary. Cao-Shaw-Wang [2] have obtained
a solution to this problem in a locally Stein domain of the complex projective
space. On strongly g-convex (or concave) domains, this problem has been stud-
ied by Sambou in [13]. In [10], the author studied this problem on a weakly
g-pseudoconvex domain with C'-smooth boundary in C" and extended this
result to a Stein manifold in [11]. Also Saber in [12], studies this problem on a
weakly pseudoconvex domain with smooth boundary for forms in E€™ under
the positivity condition on E. The purpose of this paper is to extend this result
to a weakly g-convex domain for forms of type (r, s), s > ¢ with values in E®™
and under a different condition. More precisely, we prove the following result:

Theorem 1. Let X be a complex manifold of dimension n > 2 and let Q2 € X
be a weakly q-convex domain with smooth boundary in X. Assume that E is a
holomorphic line bundle over X and E®™ is the m-times tensor product of E
for positive integer m. Suppose that there exists a strongly plurisubharmonic
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function on a neighborhood of the boundary of . Then, for a € L%)S(X7 E®m),

supp o C Q, with s > q, satisfying Oa = 0 in the distribution sense in X, there
exists u € L2, (X, E®™), supp u C Q such that du = « in the distribution
sense in X.

Applications to the solvability of the dj-problem on boundaries of weakly
g-convex domains with smooth boundary in Kéahler manifolds are given. Fur-
thermore, we shall establish an extension theorem for the dp-closed forms.

2. Notation and preliminaries

Let X be an n-dimensional complex manifold. Let €2 be an open subset of
X and p be its defining function. Let E be a holomorphic line bundle over X
and let £ be its dual. Let {U;};c; be an open covering of X such that E|y,
is trivial, namely 7=}(U;) = U; x C, and (zjl7 zJQ-, .-+, 2}') be local coordinates
on U;. Let {e;r} be a system of transition functions of E with respect to a
covering {U;};es. An (r,s) forms o = {a;} on X can be expressed as follows:

, _

_ — 4O A gD

aj= > aepd5" Az
CoD.

where C;. = (¢1,...,¢;) and Dg = (dy,...,ds) are multiindices and so on. The
notation 3" means the summation over strictly increasing multiindices. Let

n
ds® = Z 9;.a5(2) d25 d?f
a,B=1

be a hermitian metric on X. We associate to ds?, the (1,1) differential form
‘/T_T > p=195.05(2) dz§ A cﬁf If dw = 0, the metric ds? is called Kéhler
metric and w is called the Kahler form associated to the metric ds?. A complex
manifold X is called K&hler manifold if we can define Kéhler metric on it. Let
h = {h;} be a hermitian metric of E = {e;;} with respect to the covering
{U;} ;e satisfies h; = |ejx|*h on U; N Uy. For integers 7,5 > 0, m > 1, we
define the following notations:

e C2(Q, E®™): the complex vector space of E®"-valued differential
forms of class C™ and of type (r,s) on €.

o C(Q, E®™): the subspace of C2% (9, E®™) whose elements can be
extended smoothly up to b<2.

e D, (Q, E®™): the space of E®"-valued differential forms of type (r, s)
with compact support in €.

e The operator x : C25(X, E®™) — Cp° (X, E®™) is the Hodge
star operator.

e The operator #pem : C2%(X, E®™) — C25.(X, E*®™) is defined by
# pem a = h™ @, which commutes with the Hodge star operator, and

w =
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the corresponding operator # g.em : CP% (X, E*®™) — C5.(X, E®™)
is defined by

#peoma = (W)@ = (M) Ta = h™"a = #51..a.

Thus #g+ema = #Eé@ma.

Brﬁs(ﬁ, E®m) = {a S C;Dg(ﬁ, E®m) txHpem ale = 0}

e dV is the volume element with respect to ds?.

© 0:C%_1(QE®™) — C%(Q, E®™) is the Cauchy-Riemann operator

r,s—1
and v, its formal adjoint.
dom(9, E®™), range(d, E®™) and B
ker(9, E®™) is the domain, the range and the kernel of d, respectively.
C (X, E®™) Nker(9,E®9™)

H™s (X, E®m) = e (X.Bem))

o O (b2, E®™) = C’;?f;(ﬁ, E®™) /D, +(Q, E€™).

e We put

Trs 0 Cpo(Q, E¥™) — C23,(bQ, E®™),
Ors : Dp,aClpg) (Q, E®™) — O35, (b2, E®™)
the natural projections. For simplicity we put
s (W) = ulp.
The Op-operator
Dy : Cﬁf;(bQ7E®m) — 1?,OS“(I)Q,E@””)
is defined by

5b = 0Or,s4+1© do (71-7",8)71'

Differentiable functions f on bS) satisfying 0, f = 0 are called CR functions
on b2 Tt is clear that f is CR if there exists a differentiable function /' on (2
satisfying F|po = f and OF = 0. Then the space C2%(b€2, E) and the operator

By : O (02, ™) — O, (bQ, E5™)

are defined similarly as above.
For o, u € C25,(X, E®™), the local inner product (a, ), is defined by

(Oé, u)de = qj /\*hmﬂj = qj A *#Hpem Uy

For a, u € O (X, E®™) the global inner product (o, u)m, o and the norm
lae]|m @ are defined by

(o, Wm0 = / aN*x#Hpom u,
Q

||aH72n,Q = <O(, a>m,Q-
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For o € Cff;(Q,E@’m) and n € D, s_1(Q, E®™), the formal adjoint operator
Um of the operator 0 : C25_ (Q, E¥™) — C25(Q, E®™) is defined by:

rs—1
(Imor, N)m,0 = <0‘7577>m,97
U = — #gom x 0% Fpgom.
Other notations are the following:
o L2 (€, E®™) is the Hilbert space obtained by completing C23,(Q, E¥™)
under the norm |[|a|2, .

e 0: L2, (Q,E®") — L} (Q,E®™) is the maximal closed extension

r,s—1

(2.1)

of the the Cauchy-Riemann operator d and 5; its Hilbert space adjoint.
o UM =007, =80,, +0,,0 : dom(0, 5, E¥™) — L2 (Q, E®™) is the
Laplace-Beltrami operator (I for E®™-valued forms, where

dom(CI", B®™) = {u € L2 (2, E®™) : u € dom(d, E®™) N dom(,,, E®™);
du € dom(d,,, E®™) and 9,,u € dom(d, E®™)}.

o H' (E®™) = {u € dom(OJ)", E®™) : Ju = 8, u = 0} is a closed

.87
subspace of dom((J™,, E®™) since (I, is a closed operator.

T,89 7,8

e The §-Neumann operator N™ = NJ™, : L2 (Q, E®™) — L2 (Q, E®™)
is defined as the inverse of the restriction of (1", to (7, (E®™))*, Le.,

(0 ifueHm (BS™),
Nygu = . '
v if u =070, and v L H (E®™).

In other words, N;",u is the unique solution v to the equations [J]";v =

u—II" u and II%v =0, where IT", : L? (0, E®™) — H" (E®™) is
the orthogonal projection from the space LiS(Q, E®™) onto the space
HP(EE™).
The following proposition is due to Hormander [7] Propositions 1.2.3 and
1.2.4.

Proposition 1. B, ,(Q, E®™) is dense in dom(d,,, EX™) (resp. dom(d, E®™)

N dom(D.,,, E®™)) with respect to the graph norm (|2, + ||0.,al2,)Y/2 (resp.
(ledZ, + 19allZ, + 19, allZ)2).-

The curvature form associated to the metric h is defined by © = {0©;},

©; =v=100logh; =v-1 > O, 5dz5 Ndz],

ja
a,f=1

8%logh; - . i
where O, = = —=—27 is the coefficients of the curvature form © associated
jobs 025 0%,

to the metric h.
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Definition 1. A holomorphic line bundle 7 : E — X is said to be positive
on a subset Q of X if there exist a coordinate cover {U;};ecs of X such that
71 (U;) are trivial and a hermitian metric h = {h;} along the fibres of E such
that —logh; is strictly plurisubharmonic on U; N Q for any j € J.

By a complex tensor calculus for Kéhler manifolds with boundary, one obtain
the following theorem (see [15]).

Proposition 2. Let X be a Kahler manifold of dimension n and let QQ € X be
an open subset of X. Assume that E is a holomorphic line bundle over X and
E®™ s the m-times tensor product of E for positive integer m. Let U* be a
neighborhood of bY and let ¥V be the covariant differentiation associated to ds®.
If m > 1, we have

19all?, + 19,217,

= &p T, yB._
= ||Voz||il+/ hygradp| =" Z fc 5.9 T dSs

BHLY
(2.2) bQ Pyl 028027
o B ¥l B B Cr B,
/hm (S[m® + RO - R;‘a)x of o ol Py
for a € B, 5(Q, E®™), such that supp o € U*, r >0, and s > 1, where
187 < C,D.
Pl = [ a0 Tael v
@ a,p=1
R%“m = _ <Z g] ER 7g]BU) is the Riemann curvature tensor,
2
Row = —W(log det gjaE) is the Ricci curvature tensor,
3 Y%
82
Our = fW(log h) is the curvature tensor of E and,
3 Y%

07 denotes the Kronecker’s delta.

For a given boundary point zy € bf2, we consider a boundary complex

frame which means an orthonormal basis dz!,...,d2z" = 9p of (1,0)-forms
with C'°° coefficients on a small neighborhood U of z3. We denote by (%),
20zj

1 <4,7 <n — 1, the matrix of the Levi form d9p(z) in the complex tangential
direction at z with respect to the basis dz', ... dz". Let \1(2) < -+ < Ap_1(2)

p(z)
be the eigenvalues of ( 92, Bz])
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Definition 2 (cf. [6]). Let Q be a smooth domain in C™ and p be its defining
function, € is weakly g-convex (¢ > 1) if at every point z € bQ) we have

Z’ ijk ujk Ugx = 0 for every (0, q)-form u = Z u; @’ such that
ot |71=a

ZLj(p)qu =0 forall |[K|=¢q-1.

j=1

Lemma 1 (cf. [6]). Let Q be a smooth domain in C™ and p be its defining
function. The following two conditions are equivalent:

(1) Q is weakly q-convez.

(2) For any z € bS) the sum of any q eigenvalues p;,, ..., p;,, with distinct
subscripts, of the Levi-form at z satisfies 25:1 pi; = 0.

Definition 3. o € L2 (Q, E®™) is supported in Q (supp a C Q) or « vanishes
to infinite order at the boundary of € if « vanishes on b{2.

To prove the basic estimate (3.6), the following lemma which is Theorem
1.1.3 of [7] is needed.

Lemma 2. Let H;(j = [,2,3) be three Hilbert spaces and T : Hy — Ho

and S : Hy — Hjz be closed linear operators with dense domains such that

ST = 0. Assume that for any sequence {f,} such that f, € HyNdom S Ndom T,

lavllf, <1 and lim ||Sa, ||}, =0, lim |Ta,||3, =0, one can choose a
V—r00 V—>00

strongly convergent subsequence of {f,}. Then rangeange(T) is closed and
H(S)/range(T) is a finite dimensional vector space.

3. Proof of Theorem 1

Let X be an n-dimensional complex manifold and let Q@ € X be a weakly
g-convex domain with smooth boundary b§2. Let E — X be a holomorphic
line bundle which is positive on a neighborhood V of Q. Let h = {h;} be the
metric of E on X which gives the positivity of E on V with respect to a suitable
covering {U; } je s of X. Then the curvature form Y7 5, ( Olog hg) dzNdzP

Bz;" 62]

. . . 2 n 8%log h; a B
of a provides a Kéhler metric do® = 3., 5, | —5o-# | d2*dz” on V. We
)

may assume that the defining function p of b2 is constructed from the geodesic
distance with respect to the metric do? and we obtain the following lemma.

Lemma 3. There exist neighborhoods V. and V' of bQ, a coordinate covering
{U;}jes of X, a fibre metric h = {h;} of E on X and a hermitian metric
ds® =370 51 9,45(2) d2f cﬁf on X such that

H VeV and V' is contained in a smooth product neighborhood of bS,

2) 7= 1(U;) is trivial for any j € J and U; € V if U; NbQ # @,

3) E is positive on V' with respect to h,
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4) the restriction of ds® onto V' coincides with the Kihler metric do?.

Under the situation of Lemma 3, one obtain the following estimate (see
Appendix IT in [16]).

Proposition 3. There exist a positive constant C' not depending on m and a
positive integer mq such that for any m > mg, 7 > 0, s > ¢, we have

(3.1) [Vally, ok +(m—mo)llal7, oy < CUI0, o +10mallf o+ el ).

where K is the compact subset of Q defined by K = Q\(QN V) and V is the
covariant differentiation of type (0,1) associated to the metric ds?.

Proof. In the situation of Lemma 3, assume that x is a C'*°-function on X such
that supp x € V/ and x = 1 on V. Then one can apply the formula (2.2) to
xa. Since the third term of the right-hand side of (2.2) is non-negative by the
weakly g-convexity of b2 for s > ¢, one obtain

IFoca)l, + [ oS s (s7me] + 1Y) - a7
(3.2) ™ Bay=1
61) Bs—l Ay a%*
x (xe) 5 (xe)§ P Ay < D0a) 2, + 118, (xa) I3,
Since the integrand of the first term of the left-hand side of (3.2) is nonnegative
on V' one obtain

(3-3) Vel ok < IVl

where K = Q\(Q N V). From the construction of ds*, the matrix (g;,3)
coincides with the one (©,3) at each point of V'. Hence

p— n —
Gg = ngw@va = 65
y=1

Also, at each point of supp x, there exists a positive constant C' not depending
on m such that the hermitian form

B, -
_ —= 7Cr_1aD,_
> s (07RE - 1RIZ) (X 00,5, (x)] 0
Biy=1
is greater than R
67" Ds
—C Z(Xa)j,CT53 (xa); ™=

Setting mo = [C] + 1 for every m > my, one obtain

(m —mo)llal7 onx < (m—mo)xall,

m ot oF o pB_ .poB
(3.4) < / Y 3(57 (mOZ + RZ] —rRTa)
mo Ba=1
C,yBs_1
x (xa)l, . (xa); "V,
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Moreover we have

1D(x)I2, + (105, (x) 170,02

2([9x A allz, + [Fx A xall?, + [xDalls, + [xTmall?)
C(lloal, + 10mal?, + a7 ovx)

(3.5) <
<

for a positive constant C' > 4 - max{l, co - sup |grad x|4s2(z)} and m > 1 where
¢p is a positive constant depending only on the dimension of X. From (3.3),
(3.4) and (3.5) into (3.2), we obtain the desired estimate. O

Proposition 4. There exists a positive constant m, such that for any m > m.,
the harmonic space H]',(E®™) has finite dimension and there exists a positive
constant Cy, depending on m such that

(3.6) a7, < Cm (107, + 19,,ell7,)

for a € dom (8, E®™) N dom (3,,,, E®™) with s > q.

Proof. Let mg, C' and K be the same as in Proposition 3, then we determine a
positive integer m, as m, = mg+1. As in Proposition 3, let x be a real-valued
C*°-function on X such that supp x € X and x = 1 on K. If m > m, and
a € B, s(Q, E®™), then from (3.1), we obtain the following estimate:

— —*
a7, < o107, + 1187, + llxell7,),

where (), is a positive constant depending on m.
Take any sequence {a,} such that a, € domd N domd,,, || ||* < 1 and

18, a2, = 0. Then, from Lemma 2 there exists

hi>noo|‘5al/||?n = 07 m

lim
a subsequence {ay, }Vgofau} which converges strongly on . In fact ds? is
complete, D, (2, E®™) is dense in dom d N dom 5; with respect to the norm
lall2, + |18al2, + 18,12, ([17], Theorem 1.1). Hence we may assume o, €
D, s(Q, E®™). Thus

OO, + 195 (xw) 17, + 1 Oxan) 2, = (O™ (xw), X )m + (Xt XY m
is bounded by the assumption. From coerciveness of elliptic differential opera-
tor 0™ on D, (2, E®™) (cf. [4], (2.2.1) Theorem) and Rellich’s lemma (cf. [4],
Appendix (A.1.6) Proposition), it follows that {«,} has a subsequence {a,, }
which is strongly convergent on compact subset K of Q. By (3.1), we conclude
that {a,, } converges strongly on Q. Thus, by Hérmander [7] Theorem 1.1.2
and Theorem 1.1.3, there exists a positive constant C,,, such that

(3.7) lall7, < Co(l10adl5, + 119,117,

for « € dom (8, E®™) N dom (8,,, E®™) with a L H (E®™), while each
element a in H]" (E®™) is a solution of the operator [0”*. Namely « is a
harmonic form with valued in E®™. Now, from (3.1), a vanishes identically on
Q\ K. Since any connected component of €2 is not contained in K, by the above
unique continuation property, a vanishes on each connected component and so
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o vanishes identically on €. Hence H’,(E®™) is the null space. Combining
this with (3.7), the proof is completed. (]

Remark 1. If there exists a strongly plurisubharmonic function ¢ on a neigh-
borhood V' of b€}, then any line bundle E is positive on a relatively compact
neighborhood of 2. In fact let h be a metric of E over X and extend ¢ to
a C*°-function ® on X without changing the original near b2 in a suitable
manner. Then there exists a positive integer m* such that h,, = he™™® gives
the positivity of E on a relatively compact neighborhood V/(€ V) of bQ for
every m = m*.

Remark 2. There are pseudoconvex domains with smooth boundary b2 not
possessing such a strongly plurisubharmonic function on any neighborhood of
b2 but possessing a line bundle which is positive on a neighborhood of b (cf.

[5])-

Theorem 2. Let X be a complex manifold of dimension n > 2 and let Q2 € X
be a weakly q-convex domain with smooth boundary in X. Assume that E is a
holomorphic line bundle over X and E®™ is the m-times tensor product of E
for positive integer m. Suppose that there exists a strongly plurisubharmonic
function on a neighborhood of bS). Then there exists a positive integer m*
such that, for m > m*, r > 0, s > q, there exists a bounded linear operator
N™: L} (Q,E®™) — L2 (Q, E®™) such that

(i) range(N™, E€™) C dom(CJ™, E®™),

N™mO™ = [ — 1™ on dom(O™, E®™),
(ii) for o € LZ ((Q, E®™), we have
a=080,N"a & 0,,0N™a & I"a,

(iii) N™9 = IN™ on dom(0, E®™) and

(iv) N™d,, =8, N™ on dom(d,,, E®™),

(v) N™, N™, 8. N™ are bounded operators on L2 (Q,E®™).
Proof. From (3.6), we obtain
(3-8) [allm < CnllB™allm
for a € dom (9, E®™) N dom (8,,, E¥™) domd,, with s > ¢. Since O™
is a linear closed densely defined operator, then, from [7]; Theorem 1.1.1,

range(0J™, E®™) is closed. Thus, from (1.1.1) in [7]] and the fact that (O™
is self adjoint, we have the Hodge decomposition

L2,(9, E®™) = 80,,dom O™ @ 8,,d dom [I™.

Since O™ : dom(O™, E®™) — range(d™, E®™) = L2 [(Q, E®™) is one to one
on dom (O™, E®™) from (3.98), there exists a unique bounded inverse operator

N™: L2 (9, E®™) — dom(O™, E®™)
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such that N™O™a = a on dom (O™, E€™). Also, from the definition of N™,
we obtain O™N™ = I on L? (€, E®™). Thus (i) and (ii) are satisfied. To
show that 9, N™ = N™3, on dom(d,,, E®™), by using (i), we have 8,0 =
8, 89, N™q for o € dom (3,,, E¥™). Thus
N™3,,a = N™9,,09,,N"a =N"(,,d+30,,) 0, N"a =03, N"a.
A similar argument shows that ENT = N™0 on dom 9. By using (iii) and the
condition on a, da = 0, we have IN™a = N™Ja = 0. Then, by using (ii),
we obtain a = 88,, N™a. Thus the form u = 9,, N™« satisfies the equation
Ou = a. Since Rang(N™, E®™) C dom(O™, E®™), then by applying (3.6) to
N™q instead of «, we obtain
HNmaHm < Cm”aH'f”/?

ION™ | + [0 Nl < 20/ Cr @]l
Thus the proof follows. O

Theorem 3. Under the same assumption of Theorem 2, for a € L%S(X, E®m),
suppa C Q, with s > q, satisfying Oa = 0 in the distribution sense in X, there
exists u € L2, (X, E®™), supp u C Q such that du = « in the distribution
sense in X.

Proof. Let a € L? (X,E®™), suppa C Q, then o € L2 (Q,E®™). Fol-

lowing Theorem 2, N;* ., _. exists for n —s > ¢. Thus, one can define
u € L?ﬂ,s—l(QvE(gm) by
(39) U= —% #E®m gN'rTL)zr,nfs#E®m * Q.

Extend u to X by defining u = 0 in X \ Q. To prove that u satisfies du = «
in the distribution sense in X, we first prove that du = « in the distribution

sense in 2. 7
For n € dom(9, E*®™), we have

<5777 #E@m * O[>m7Q = (_1)T+S (a, #E*®m *57]>77L7Q.

From the density of the space B,.(€, E®™) in dom (9, E®™)Ndom (8", E®™)
in the graph norm (cf. Proposition 1) and since 9™ = 5; on B, (0, E®¥™),
when 9™ acts in the distribution sense, we have from (2.1) that
(O, #pem * @) m.a = (@, 0y, #geam * 1) m.q-
Since supp a C Q, then we obtain
(On, #pom * Q)0 = (aﬁ; #grom X N)m,0 = (O, # gram * Mm.x = 0.

It follows that
5;(#E®nl *Oz) = 0 on Q.
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Using Theorem 2(iv), we have

(3.10) DN s (Hpom % @) = N (10, (#pom * @) = 0.

Thus, in the distribution sense in © and from (2.1), (3.9) and (3.10), we obtain
Ou=—09 % #p-om ON' ., Hpom * «

D) % om0, N Fpem *a

(_
(_1)T‘+S * #E*®7n (5;5 + 55;) N’:Ln_'f',n—s#E@”L *
(,
Q.

(3.11)

1) % #peom# gom *

Because u = 0 in X \ ©, then for n € dom(d,,, E®™) C L? (X,E®™), one
obtain
<u75:177>m,X = <ua5:n77>m79 = <#E®’” *5:7177’ #E®m * u>m,Q-

Since

#pom x u=(=1)"TFTLIN™ Hpom xa € dom(gjn, E*@m),

n—r,n—s

Thus, from (2.1), we obtain
<u75jnn>m,X = (_1)T+s <53’9£E®m * 1, #E®m * u>m,Q

= <#E®m * 1, # gom *5U>m,n = <5U777>m,sz~
Thus, from (3.11),

(4, Dy = (Dm0 = (@ D) x-

Thus du = « in the distribution sense in X. O

4. Solvability of the dp-problem
In this section, applications to the solvability of the d,-problem are given.

Theorem 4. Let X be a Kahler manifold of dimensionn > 2 and let Q) € X be
a weakly q-convex domain with smooth boundary in X. Let E be a holomorphic
line bundle over X and E®™ be the m-times tensor product of E for positive
integer m. Suppose that there exists a strongly plurisubharmonic function on
a neighborhood of bQ. Then, for f € C5(bQ, E®™), ¢ < s < n — 2, satisfying
Opf =0, there exists F € C5(D, E®™) such that Flyq = f and OF = 0.

Proof. The proof follows as in Theorem 4.1 in Saber [12]. O

Theorem 5. Under the same assumption of Theorem 4, if [ € C2%(b9, E®m),
1 < s < n—2, with Oyf = 0, there exists u € C°_,(bQ2, E®™) such that

— r,s—1

a,u:f.
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Proof. Let f € Cff;(bQ,E@’m), 1 < s <n—2, with 9,f = 0. Then from
Theorem 4, there exists F € C25(, E®™) such that Flyg = f and OF = 0.
Following Theorem 3, there exists U € ,‘?f;_l(ﬁ, E®™) satisfying OU = f in

Q). Then u = Ulpq satisfies dpu = f. O

Corollary 6. Let X be a Kahler manifold of dimensionn > 2 and let D € X be
a weakly q-concave domain with smooth boundary in X. Let E be a holomorphic
line bundle over X and E®™ be the m-times tensor product of E for positive

integer m. Suppose that there exists a strongly plurisubharmonic function on a
neighborhood of VY. If H™*(X, E®™) = 0, then, for f € C5(D, E®™), 0f =0,
q < s<n—2, there exists u € C_,(D, E®™) such that Ou = f.

r,s—1

Proof. The proof follows as in Corollary 4.3 in Saber [12]. O

_ The necessary and sufficient condition on f € Wr%s(bQ,E‘@m) to have a

0-closed extension F on () is summarized as follows.

Theorem 7. Let Q, E and X be the same as in Theorem 4.1. For f €
1 —

W2 (bQ,E®™), 0 <r<n,q<s<n-—2 We assume that Opf = 0. Then

there exists F € L2 ,_,(Q, E®™) such that F = f on bQ) and OF =0 in .

r,s—1

Proof. The proof follows as in Theorem 4.4 in Saber [12]. O

5. Extension from the boundary

Let X be a connected complex manifold of dimension n > 2, and let Q C X
be any domain with C°°-smooth boundary. Let E be a holomorphic vector
bundle over X. In this section we prove the following results:

Lemma 4. For any a € C25(bQ, E) satisfying Oyf = 0, there ewists a €
C23(Q, E) such that alvq = o and that O vanishes to the infinite order on bS).

Proof. The proof follows as in Lemma 4 in Oshawa [9]. O

By virtue of a theory of Kodaira-Andreotti-Vesentini (cf. Kodaira [8], An-
dreotti and Vesentini [1]), we can show that a sufficient condition for the C*-
extendability can be stated as follows.

Lemma 5. Let X be a connected Kahler manifold of dimension n and let
Q € X be a weakly q-conver domain with C°-smooth boundary. Let E be
a holomorphic vector bundle over X. Suppose that Q admits a C*>° defining
function p such that

90(—log(—p)) > ¢ (d(~1log(—p))0(~log(~p)) + w).
holds on §Q for some positive constant c. Then, for any ¢ € C2% (b2, E) N

ker (Op, E) with s < n— 1, and for any nonnegative integer k, there exists a
O-closed E-valued (r, s)-form Wy of class C* on Q satisfying Wy |po = 1.

Proof. The proof follows as in Theorem 5 in Oshawa [9]. O
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