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SOLUTION TO ∂-PROBLEM WITH SUPPORT CONDITIONS

IN WEAKLY q-CONVEX DOMAINS

Sayed Saber

Abstract. Let X be a complex manifold of dimension n > 2 and let

Ω b X be a weakly q-convex domain with smooth boundary. Assume
that E is a holomorphic line bundle over X and E⊗m is the m-times

tensor product of E for positive integer m. If there exists a strongly
plurisubharmonic function on a neighborhood of bΩ, then we solve the

∂-problem with support condition in Ω for forms of type (r, s), s > q with

values in E⊗m. Moreover, the solvability of the ∂b-problem on boundaries

of weakly q-convex domains with smooth boundary in Kähler manifolds
are given. Furthermore, we shall establish an extension theorem for the

∂b-closed forms.

1. Introduction

In [3], Derridj considered the ∂-problem with exact support by using Carle-
man type estimates for smooth domains with plurisubharmonic defining func-
tions. In [14], Shaw has obtained a solution to this problem in a pseudo-convex
domain in Cn with C1 smooth boundary. Cao-Shaw-Wang [2] have obtained
a solution to this problem in a locally Stein domain of the complex projective
space. On strongly q-convex (or concave) domains, this problem has been stud-
ied by Sambou in [13]. In [10], the author studied this problem on a weakly
q-pseudoconvex domain with C1-smooth boundary in Cn and extended this
result to a Stein manifold in [11]. Also Saber in [12], studies this problem on a
weakly pseudoconvex domain with smooth boundary for forms in E⊗m under
the positivity condition on E. The purpose of this paper is to extend this result
to a weakly q-convex domain for forms of type (r, s), s > q with values in E⊗m

and under a different condition. More precisely, we prove the following result:

Theorem 1. Let X be a complex manifold of dimension n ≥ 2 and let Ω b X
be a weakly q-convex domain with smooth boundary in X. Assume that E is a
holomorphic line bundle over X and E⊗m is the m-times tensor product of E
for positive integer m. Suppose that there exists a strongly plurisubharmonic
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410 S. SABER

function on a neighborhood of the boundary of Ω. Then, for α ∈ L2
r,s(X,E

⊗m),

suppα ⊂ Ω, with s > q, satisfying ∂α = 0 in the distribution sense in X, there
exists u ∈ L2

r,s−1(X,E⊗m), supp u ⊂ Ω such that ∂ u = α in the distribution
sense in X.

Applications to the solvability of the ∂b-problem on boundaries of weakly
q-convex domains with smooth boundary in Kähler manifolds are given. Fur-
thermore, we shall establish an extension theorem for the ∂b-closed forms.

2. Notation and preliminaries

Let X be an n-dimensional complex manifold. Let Ω be an open subset of
X and ρ be its defining function. Let E be a holomorphic line bundle over X
and let E∗ be its dual. Let {Uj}j∈J be an open covering of X such that E|Uj
is trivial, namely π−1(Uj) = Uj × C, and (z1

j , z
2
j , . . . , z

n
j ) be local coordinates

on Uj . Let {ejk} be a system of transition functions of E with respect to a
covering {Uj}j∈J . An (r, s) forms α = {αj} on X can be expressed as follows:

αj =
∑
Cr,Ds

′
αjCrDsdz

Cr
j ∧ dz

Ds
j ,

where Cr = (c1, . . . , cr) and Ds = (d1, . . . , ds) are multiindices and so on. The
notation

∑′
means the summation over strictly increasing multiindices. Let

ds2 =

n∑
α,β=1

gj,αβ(z) dzαj dz
β
j

be a hermitian metric on X. We associate to ds2, the (1, 1) differential form

ω =
√
−1
2

∑n
α,β=1 gj,αβ(z) dzαj ∧ dz

β
j . If dω = 0, the metric ds2 is called Kähler

metric and ω is called the Kähler form associated to the metric ds2. A complex
manifold X is called Kähler manifold if we can define Kähler metric on it. Let
h = {hj} be a hermitian metric of E = {ejk} with respect to the covering
{Uj}j∈J satisfies hj = |ejk|2hk on Uj ∩ Uk. For integers r, s ≥ 0, m > 1, we
define the following notations:

• C∞r,s(Ω, E⊗m): the complex vector space of E⊗m-valued differential
forms of class C∞ and of type (r, s) on Ω.
• C∞r,s(Ω, E⊗m): the subspace of C∞r,s(Ω, E

⊗m) whose elements can be
extended smoothly up to bΩ.

• Dr,s(Ω, E⊗m): the space of E⊗m-valued differential forms of type (r, s)
with compact support in Ω.

• The operator ? : C∞r,s(X,E
⊗m) −→ C∞n−s,n−r(X,E

⊗m) is the Hodge
star operator.

• The operator #E⊗m : C∞r,s(X,E
⊗m) −→ C∞s,r(X,E

∗⊗m) is defined by
#E⊗m α = hm α, which commutes with the Hodge star operator, and
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the corresponding operator #E∗⊗m : C∞r,s(X,E
∗⊗m) −→ C∞s,r(X,E

⊗m)
is defined by

#E∗⊗mα = (hm)∗α = t(hm)−1α = h−mα = #−1
E⊗mα.

Thus #E∗⊗mα = #−1
E⊗mα.

• Br,s(Ω, E⊗m) = {α ∈ C∞r,s(Ω, E⊗m) : ?#E⊗m α|bΩ = 0}.
• dV is the volume element with respect to ds2.
• ∂ : C∞r,s−1(Ω, E⊗m) −→ C∞r,s(Ω, E

⊗m) is the Cauchy-Riemann operator
and ϑm its formal adjoint.

• dom(∂, E⊗m), range(∂,E⊗m) and
ker(∂,E⊗m) is the domain, the range and the kernel of ∂, respectively.

• Hr,s(X,E⊗m) =
C∞r,s(X,E

⊗m)∩ ker(∂,E⊗m)

∂(C∞r,s−1(X,E⊗m))
.

• C∞r,s(bΩ, E⊗m) = C∞r,s(Ω, E
⊗m)/Dr,s(Ω, E⊗m).

• We put

πr,s : C∞r,s(Ω, E
⊗m) −→ C∞r,s(bΩ, E

⊗m),

σr,s : ⊕p,qC∞(p,q)(Ω, E
⊗m) −→ C∞r,s(bΩ, E

⊗m)

the natural projections. For simplicity we put

πr,s(u) = u|bΩ.

• The ∂b-operator

∂b : C∞r,s(bΩ, E
⊗m) −→ C∞r,s+1(bΩ, E⊗m)

is defined by

∂b = σr,s+1 ◦ d ◦ (πr,s)
−1.

Differentiable functions f on bΩ satisfying ∂b f = 0 are called CR functions
on bΩ. It is clear that f is CR if there exists a differentiable function F on Ω
satisfying F |bΩ = f and ∂F = 0. Then the space C∞r,s(bΩ, E) and the operator

∂b : C∞r,s(bΩ, E
⊗m) −→ C∞r,s+1(bΩ, E⊗m)

are defined similarly as above.
For α, u ∈ C∞r,s(X,E⊗m), the local inner product (α, u)m is defined by

(α, u)m dV = αj ∧ ? hmuj = αj ∧ ?#E⊗m uj .

For α, u ∈ C∞r,s(X,E
⊗m), the global inner product 〈α, u〉m,Ω and the norm

‖α‖m,Ω are defined by

〈α, u〉m,Ω =

∫
Ω

α ∧ ?#E⊗m u,

‖α‖2m,Ω = 〈α, α〉m,Ω.
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For α ∈ C∞r,s(Ω, E
⊗m) and η ∈ Dr,s−1(Ω, E⊗m), the formal adjoint operator

ϑm of the operator ∂ : C∞r,s−1(Ω, E⊗m) −→ C∞r,s(Ω, E
⊗m) is defined by:

(2.1)
〈ϑmα, η〉m,Ω = 〈α, ∂η〉m,Ω,

ϑm = −#E⊗m ? ∂ ? #E⊗m .

Other notations are the following:

• L2
r,s(Ω, E

⊗m) is the Hilbert space obtained by completing C∞r,s(Ω, E
⊗m)

under the norm ‖α‖2m,Ω.

• ∂ : L2
r,s−1(Ω, E⊗m) −→ L2

r,s(Ω, E
⊗m) is the maximal closed extension

of the the Cauchy-Riemann operator ∂ and ∂
∗
m its Hilbert space adjoint.

• �m = �mr,s = ∂ ∂
∗
m + ∂

∗
m∂ : dom(�r,s, E⊗m) −→ L2

r,s(Ω, E
⊗m) is the

Laplace-Beltrami operator �m for E⊗m-valued forms, where

dom(�mr,s, E
⊗m) = {u ∈ L2

r,s(Ω, E
⊗m) : u ∈ dom(∂,E⊗m) ∩ dom(∂

∗
m, E

⊗m);

∂u ∈ dom(∂
∗
m, E

⊗m) and ∂
∗
mu ∈ dom(∂,E⊗m)}.

• Hmr,s(E⊗m) = {u ∈ dom(�mr,s, E
⊗m) : ∂u = ∂

∗
mu = 0} is a closed

subspace of dom(�mr,s, E
⊗m) since �mr,s is a closed operator.

• The ∂-Neumann operatorNm = Nm
r,s : L2

r,s(Ω, E
⊗m) −→ L2

r,s(Ω, E
⊗m)

is defined as the inverse of the restriction of �mr,s to (Hmr,s(E⊗m))⊥, i.e.,

Nm
r,su =

{
0 if u ∈ Hmr,s(E⊗m),

v if u = �mr,sv, and v ⊥ Hmr,s(E⊗m).

In other words, Nm
r,su is the unique solution v to the equations �mr,sv =

u−Πm
r,s u and Πm

r,sv = 0, where Πm
r,s : L2

r,s(Ω, E
⊗m) −→ Hmr,s(E⊗m) is

the orthogonal projection from the space L2
r,s(Ω, E

⊗m) onto the space

Hmr,s(E⊗m).

The following proposition is due to Hörmander [7] Propositions 1.2.3 and
1.2.4.

Proposition 1. Br,s(Ω, E⊗m) is dense in dom(∂
∗
m, E

⊗m) (resp. dom(∂,E⊗m)

∩ dom(∂
∗
m, E

⊗m)) with respect to the graph norm (‖α‖2m + ‖∂∗mα‖2m)1/2 (resp.

(‖α‖2m + ‖∂α‖2m + ‖∂∗mα‖2m)1/2).

The curvature form associated to the metric h is defined by Θ = {Θj},

Θj =
√
−1 ∂∂ log hj =

√
−1

n∑
α,β=1

Θjαβ dz
α
j ∧ dz

β
j ,

where Θjαβ = −∂
2 log hj

∂zαj ∂z
β
j

is the coefficients of the curvature form Θ associated

to the metric h.
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Definition 1. A holomorphic line bundle π : E −→ X is said to be positive
on a subset Ω of X if there exist a coordinate cover {Uj}j∈J of X such that
π−1(Uj) are trivial and a hermitian metric h = {hj} along the fibres of E such
that − log hj is strictly plurisubharmonic on Uj ∩ Ω for any j ∈ J .

By a complex tensor calculus for Kähler manifolds with boundary, one obtain
the following theorem (see [15]).

Proposition 2. Let X be a Kähler manifold of dimension n and let Ω b X be
an open subset of X. Assume that E is a holomorphic line bundle over X and
E⊗m is the m-times tensor product of E for positive integer m. Let U∗ be a
neighborhood of bΩ and let ∇ be the covariant differentiation associated to ds2.
If m > 1, we have

(2.2)

‖∂α‖2m + ‖∂∗mα‖2m

= ‖∇α‖2m +

∫
bΩ

hmj |grad ρ|−1
n∑

β,γ=1

∂2ρ

∂zβ∂zγ
αβ
jCrBs−1

α
Cr γBs−1

j dS

+

∫
m

hmj

n∑
β,γ=1

s
(
δστ [mΘβ

α +Rβα]−Rσβτα
)
× αβ

jCrBs−1
α
Cr γBs−1

j dV

for α ∈ Br,s(Ω, E⊗m), such that supp α b U∗, r > 0, and s > 1, where

‖∇α‖2m =

∫
Ω

n∑
α,β=1

gβαj ∇βαjCrDs∇αα
Cr Ds
j dV,

Rαβν γ = − ∂

∂zνj

(∑
gσ αj

∂

∂zγj
gjβσ

)
is the Riemann curvature tensor,

Rαν = − ∂2

∂zαj ∂z
ν
j

(log det gjαβ) is the Ricci curvature tensor,

Θαν = − ∂2

∂zαj ∂z
ν
j

(log h) is the curvature tensor of E and,

δστ denotes the Kronecker’s delta.

For a given boundary point z0 ∈ bΩ, we consider a boundary complex
frame which means an orthonormal basis dz1, . . . , dzn = ∂ρ of (1, 0)-forms

with C∞ coefficients on a small neighborhood U of z0. We denote by
(
∂2ρ(z)

∂zj∂zj

)
,

1 6 i, j 6 n− 1, the matrix of the Levi form ∂∂ρ(z) in the complex tangential
direction at z with respect to the basis dz1, . . . , dzn. Let λ1(z) 6 · · · 6 λn−1(z)

be the eigenvalues of
(
∂2ρ(z)

∂zj∂zj

)
.
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Definition 2 (cf. [6]). Let Ω be a smooth domain in Cn and ρ be its defining
function, Ω is weakly q-convex (q > 1) if at every point z ∈ bΩ we have∑
|K|

′∑
j, k

ρjk ujK ukK > 0 for every (0, q)-form u =
∑
|J|=q

uJ ω
J such that

n∑
j=1

Lj(ρ)ujK = 0 for all |K| = q − 1.

Lemma 1 (cf. [6]). Let Ω be a smooth domain in Cn and ρ be its defining
function. The following two conditions are equivalent:

(1) Ω is weakly q-convex.
(2) For any z ∈ bΩ the sum of any q eigenvalues ρi1 , . . . , ρiq , with distinct

subscripts, of the Levi-form at z satisfies
∑q
j=1 ρij > 0.

Definition 3. α ∈ L2
r,s(Ω, E

⊗m) is supported in Ω (supp α ⊂ Ω) or α vanishes
to infinite order at the boundary of Ω if α vanishes on bΩ.

To prove the basic estimate (3.6), the following lemma which is Theorem
1.1.3 of [7] is needed.

Lemma 2. Let Hj(j = l, 2, 3) be three Hilbert spaces and T : H1 −→ H2

and S : H2 −→ H3 be closed linear operators with dense domains such that
ST = 0. Assume that for any sequence {fν} such that fν ∈ H2∩domS ∩ domT ,
‖αν‖2H2

6 1 and lim
ν−→∞

‖Sαν‖2H3
= 0, lim

ν−→∞
‖Tαν‖2H1

= 0, one can choose a

strongly convergent subsequence of {fν}. Then rangeange(T ) is closed and
H(S)/range(T ) is a finite dimensional vector space.

3. Proof of Theorem 1

Let X be an n-dimensional complex manifold and let Ω b X be a weakly
q-convex domain with smooth boundary bΩ. Let E −→ X be a holomorphic
line bundle which is positive on a neighborhood V of bΩ. Let h = {hj} be the
metric of E on X which gives the positivity of E on V with respect to a suitable

covering {Uj}j∈J of X. Then the curvature form
∑n
α,β=1

(
−∂

2loghj

∂zαj ∂z
β
j

)
dzα∧dzβ

of a provides a Kähler metric dσ2 =
∑n
α,β=1

(
−∂

2loghj

∂zαj ∂z
β
j

)
dzα dzβ on V . We

may assume that the defining function ρ of bΩ is constructed from the geodesic
distance with respect to the metric dσ2 and we obtain the following lemma.

Lemma 3. There exist neighborhoods V and V ′ of bΩ, a coordinate covering
{Uj}j∈J of X, a fibre metric h = {hj} of E on X and a hermitian metric

ds2 =
∑n
α,β=1 gjαβ(z) dzαj dz

β
j on X such that

1) V b V ′ and V
′

is contained in a smooth product neighborhood of bΩ,
2) π−1(U j) is trivial for any j ∈ J and Uj b V if Uj ∩ bΩ 6= ∅,
3) E is positive on V ′ with respect to h,
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4) the restriction of ds2 onto V ′ coincides with the Kähler metric dσ2.

Under the situation of Lemma 3, one obtain the following estimate (see
Appendix II in [16]).

Proposition 3. There exist a positive constant C not depending on m and a
positive integer m0 such that for any m > m0, r > 0, s > q, we have

(3.1) ‖∇α‖2m,Ω\K+(m−m0)‖α‖2m,Ω\K 6 C(‖∂α‖2m,Ω+‖∂∗mα‖2m,Ω+‖α‖2m,K),

where K is the compact subset of Ω defined by K = Ω\(Ω ∩ V ) and ∇ is the
covariant differentiation of type (0, 1) associated to the metric ds2.

Proof. In the situation of Lemma 3, assume that χ is a C∞-function on X such
that supp χ b V ′ and χ = 1 on V . Then one can apply the formula (2.2) to
χα. Since the third term of the right-hand side of (2.2) is non-negative by the
weakly q-convexity of bΩ for s > q, one obtain

(3.2)

‖∇(χα)‖2m +

∫
m

hm
n∑

β,γ=1

s
(
δστ [mΘβ

α +Rβα]− rRσβτα
)

× (χα)β
j,CpBs−1

(χα)
Cp γBs−1

j dV 6 ‖∂(χα)‖2m + ‖∂∗m(χα)‖2m.

Since the integrand of the first term of the left-hand side of (3.2) is nonnegative
on V ′, one obtain

(3.3) ‖∇α‖2m,Ω\K 6 ‖∇(χα)‖2m,

where K = Ω\(Ω ∩ V ). From the construction of ds2, the matrix (gjαβ)

coincides with the one (Θαβ) at each point of V ′. Hence

Θβ
α =

n∑
γ=1

gβγj Θγα = δβα.

Also, at each point of suppχ, there exists a positive constant C not depending
on m such that the hermitian form

n∑
β,γ=1

s
(
δστR

β
α − rR

σβ
τα

)
(χα)j,σCr−1β Ds−1

(χα)
τCr−1 αDs−1

j

is greater than

−C
∑

(χα)j,CrDs(χα)Cr Dsj .

Setting m0 = [C] + 1 for every m > m0, one obtain

(3.4)

(m−m0)‖α‖2m,Ω\K 6 (m−m0)‖χα‖2m

6
∫
m

hm
n∑

β,γ=1

s
(
δστ [mΘβ

α +Rβα]− rRσβτα
)

× (χα)β
jCrBs−1

(χα)
Cr γBs−1

j dV.
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Moreover we have

(3.5)

‖∂(χα)‖2m + ‖∂∗m(χα)‖2m,Ω
6 2(‖∂χ ∧ α‖2m + ‖∂χ ∧ ?α‖2m + ‖χ∂α‖2m + ‖χ∂∗mα‖2m)

6 C(‖∂α‖2m + ‖∂∗mα‖2m + ‖α‖2m,Ω\K)

for a positive constant C > 4 ·max{l, c0 · sup |gradχ|ds2(x)} and m > 1 where
c0 is a positive constant depending only on the dimension of X. From (3.3),
(3.4) and (3.5) into (3.2), we obtain the desired estimate. �

Proposition 4. There exists a positive constant m∗ such that for any m > m∗,
the harmonic space Hmr,s(E⊗m) has finite dimension and there exists a positive
constant Cm depending on m such that

(3.6) ‖α‖2m 6 Cm(‖∂α‖2m + ‖∂∗mα‖2m)

for α ∈ dom (∂,E⊗m) ∩ dom (∂
∗
m, E

⊗m) with s > q.

Proof. Let m0, C and K be the same as in Proposition 3, then we determine a
positive integer m∗ as m∗ = m0 +1. As in Proposition 3, let χ be a real-valued
C∞-function on X such that supp χ b X and χ = 1 on K. If m > m∗ and
α ∈ Br,s(Ω, E⊗m), then from (3.1), we obtain the following estimate:

‖α‖2m 6 Cm(‖∂α‖2m + ‖∂∗mα‖2m + ‖χα‖2m),

where Cm is a positive constant depending on m.

Take any sequence {αν} such that αν ∈ dom∂ ∩ dom∂
∗
m, ‖αν‖2 6 1 and

lim
ν−→∞

‖∂αν‖2m = 0, lim
ν−→∞

‖∂∗mαν‖2m = 0. Then, from Lemma 2 there exists

a subsequence {ανk} of {αν} which converges strongly on Ω. In fact ds2 is

complete, Dr,s(Ω, E⊗m) is dense in dom∂ ∩ dom∂
∗
m with respect to the norm

‖α‖2m + ‖∂α‖2m + ‖∂∗mα‖2m ([17], Theorem 1.1). Hence we may assume χαν ∈
Dr,s(Ω, E⊗m). Thus

‖∂(χαν)‖2m + ‖∂∗m(χαν)‖2m + ‖(χαν)‖2m = 〈�m(χαν), χαν〉m + 〈χαν , χαν〉m
is bounded by the assumption. From coerciveness of elliptic differential opera-
tor �m on Dr,s(Ω, E⊗m) (cf. [4], (2.2.1) Theorem) and Rellich’s lemma (cf. [4],
Appendix (A.1.6) Proposition), it follows that {αν} has a subsequence {ανk}
which is strongly convergent on compact subset K of Ω. By (3.1), we conclude
that {ανk} converges strongly on Ω. Thus, by Hörmander [7] Theorem 1.1.2
and Theorem 1.1.3, there exists a positive constant Cm such that

(3.7) ‖α‖2m 6 Cm(‖∂α‖2m + ‖∂∗mα‖2m)

for α ∈ dom (∂,E⊗m) ∩ dom (∂
∗
m, E

⊗m) with α ⊥ Hmr,s(E⊗m), while each

element α in Hmr,s(E⊗m) is a solution of the operator �m. Namely α is a

harmonic form with valued in E⊗m. Now, from (3.1), α vanishes identically on
Ω\K. Since any connected component of Ω is not contained in K, by the above
unique continuation property, α vanishes on each connected component and so
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α vanishes identically on Ω. Hence Hmr,s(E⊗m) is the null space. Combining
this with (3.7), the proof is completed. �

Remark 1. If there exists a strongly plurisubharmonic function φ on a neigh-
borhood V of bΩ, then any line bundle E is positive on a relatively compact
neighborhood of bΩ. In fact let h be a metric of E over X and extend φ to
a C∞-function Φ on X without changing the original near bΩ in a suitable
manner. Then there exists a positive integer m∗ such that hm = he−mΦ gives
the positivity of E on a relatively compact neighborhood V ′(b V ) of bΩ for
every m > m∗.

Remark 2. There are pseudoconvex domains with smooth boundary bΩ not
possessing such a strongly plurisubharmonic function on any neighborhood of
bΩ but possessing a line bundle which is positive on a neighborhood of bΩ (cf.
[5]).

Theorem 2. Let X be a complex manifold of dimension n ≥ 2 and let Ω b X
be a weakly q-convex domain with smooth boundary in X. Assume that E is a
holomorphic line bundle over X and E⊗m is the m-times tensor product of E
for positive integer m. Suppose that there exists a strongly plurisubharmonic
function on a neighborhood of bΩ. Then there exists a positive integer m∗

such that, for m > m∗, r > 0, s > q, there exists a bounded linear operator
Nm : L2

r,s(Ω, E
⊗m) −→ L2

r,s(Ω, E
⊗m) such that

(i) range(Nm, E⊗m) ⊂ dom(�m, E⊗m),
Nm�m = I −Πm on dom(�m, E⊗m),

(ii) for α ∈ L2
r,s(Ω, E

⊗m), we have

α = ∂ ∂
∗
mN

mα ⊕ ∂
∗
m∂N

mα ⊕ Πmα,

(iii) Nm∂ = ∂Nm on dom(∂,E⊗m) and

(iv) Nm∂
∗
m = ∂

∗
mN

m on dom(∂
∗
m, E

⊗m),

(v) Nm, ∂Nm, ∂
∗
mN

m are bounded operators on L2
r,s(Ω, E

⊗m).

Proof. From (3.6), we obtain

(3.8) ‖α‖m 6 Cm‖�mα‖m

for α ∈ dom (∂,E⊗m) ∩ dom (∂
∗
m, E

⊗m) dom ∂
∗
m with s > q. Since �m

is a linear closed densely defined operator, then, from [7]; Theorem 1.1.1,
range(�m, E⊗m) is closed. Thus, from (1.1.1) in [7]] and the fact that �m

is self adjoint, we have the Hodge decomposition

L2
r,s(Ω, E

⊗m) = ∂ ∂
∗
mdom�m ⊕ ∂∗m∂ dom�m.

Since �m : dom(�m, E⊗m) −→ range(�m, E⊗m) = L2
r,s(Ω, E

⊗m) is one to one

on dom (�m, E⊗m) from (3.98), there exists a unique bounded inverse operator

Nm : L2
r,s(Ω, E

⊗m) −→ dom(�m, E⊗m)
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such that Nm�mα = α on dom (�m, E⊗m). Also, from the definition of Nm,
we obtain �mNm = I on L2

r,s(Ω, E
⊗m). Thus (i) and (ii) are satisfied. To

show that ∂
∗
mN

m = Nm∂
∗
m on dom(∂

∗
m, E

⊗m), by using (ii), we have ∂
∗
mα =

∂
∗
m∂ ∂

∗
mN

m α for α ∈ dom (∂
∗
m, E

⊗m). Thus

Nm∂
∗
mα = Nm∂

∗
m ∂ ∂

∗
mN

mα = Nm(∂
∗
m ∂ + ∂ ∂

∗
m) ∂

∗
mN

mα = ∂
∗
mN

mα.

A similar argument shows that ∂Nm = Nm∂ on dom ∂. By using (iii) and the
condition on α, ∂α = 0, we have ∂Nmα = Nm∂α = 0. Then, by using (ii),

we obtain α = ∂ ∂
∗
mN

mα. Thus the form u = ∂
∗
mN

mα satisfies the equation
∂u = α. Since Rang(Nm, E⊗m) ⊂ dom(�m, E⊗m), then by applying (3.6) to
Nmα instead of α, we obtain

‖Nmα‖m ≤ Cm‖α‖m,

‖∂Nmα‖m + ‖∂∗mNmα‖m ≤ 2
√
Cm ‖α‖m.

Thus the proof follows. �

Theorem 3. Under the same assumption of Theorem 2, for α ∈ L2
r,s(X,E

⊗m),

suppα ⊂ Ω, with s > q, satisfying ∂α = 0 in the distribution sense in X, there
exists u ∈ L2

r,s−1(X,E⊗m), supp u ⊂ Ω such that ∂ u = α in the distribution
sense in X.

Proof. Let α ∈ L2
r,s(X,E

⊗m), suppα ⊂ Ω, then α ∈ L2
r,s(Ω, E

⊗m). Fol-
lowing Theorem 2, Nm

n−r,n−s exists for n − s > q. Thus, one can define

u ∈ L2
r,s−1(Ω, E⊗m) by

(3.9) u = − ? #E⊗m ∂ N
m
n−r,n−s#E⊗m ? α.

Extend u to X by defining u = 0 in X \ Ω. To prove that u satisfies ∂ u = α
in the distribution sense in X, we first prove that ∂ u = α in the distribution
sense in Ω.

For η ∈ dom(∂,E∗⊗m), we have

〈∂η,#E⊗m ? α〉m,Ω = (−1)r+s〈α,#E∗⊗m ? ∂ η〉m,Ω.

From the density of the space Br,s(Ω, E⊗m) in dom (∂,E⊗m)∩dom (∂
∗
, E⊗m)

in the graph norm (cf. Proposition 1) and since ϑm = ∂
∗
m on Br,s(Ω, E⊗m),

when ϑm acts in the distribution sense, we have from (2.1) that

〈∂η,#E⊗m ? α〉m,Ω = 〈α, ∂∗m #E∗⊗m ? η〉m,Ω.

Since suppα ⊂ Ω, then we obtain

〈∂η,#E⊗m ? α〉m,Ω = 〈α, ∂∗m #E∗⊗m ? η〉m,Ω = 〈∂α,#E∗⊗m ? η〉m,X = 0.

It follows that

∂
∗
m(#E⊗m ? α) = 0 on Ω.
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Using Theorem 2(iv), we have

(3.10) ∂
∗
mN

m
n−r,n−s(#E⊗m ? α) = Nm

n−r,n−s−1∂
∗
m(#E⊗m ? α) = 0.

Thus, in the distribution sense in Ω and from (2.1), (3.9) and (3.10), we obtain

(3.11)

∂ u = − ∂ ? #E∗⊗m ∂N
m
n−r,n−s #E⊗m ? α

= (−1)r+s ?#E∗⊗m∂
∗
m∂N

m
n−r,n−s#E⊗m ? α

= (−1)r+s ?#E∗⊗m (∂
∗
m∂ + ∂ ∂

∗
m)Nm

n−r,n−s#E⊗m ? α

= (−1)r+s ?#E∗⊗m#E⊗m ? α

= α.

Because u = 0 in X \ Ω, then for η ∈ dom(∂
∗
m, E

⊗m) ⊂ L2
r,s(X,E

⊗m), one
obtain

〈u, ∂∗mη〉m,X = 〈u, ∂∗mη〉m,Ω = 〈#E⊗m ? ∂
∗
mη,#E⊗m ? u〉m,Ω.

Since

#E⊗m ? u = (−1)r+s+1 ∂Nm
n−r,n−s#E⊗m ? α ∈ dom(∂

∗
m, E

∗⊗m).

Thus, from (2.1), we obtain

〈u, ∂∗mη〉m,X = (−1)r+s〈∂#E⊗m ? η,#E⊗m ? u〉m,Ω
= 〈#E⊗m ? η,#E⊗m ? ∂ u〉m,Ω = 〈∂ u, η〉m,Ω.

Thus, from (3.11),

〈u, ∂∗mη〉m,X = 〈α, η〉m,Ω = 〈α, η〉m,X .

Thus ∂ u = α in the distribution sense in X. �

4. Solvability of the ∂b-problem

In this section, applications to the solvability of the ∂b-problem are given.

Theorem 4. Let X be a Kähler manifold of dimension n ≥ 2 and let Ω b X be
a weakly q-convex domain with smooth boundary in X. Let E be a holomorphic
line bundle over X and E⊗m be the m-times tensor product of E for positive
integer m. Suppose that there exists a strongly plurisubharmonic function on
a neighborhood of bΩ. Then, for f ∈ C∞r,s(bΩ, E⊗m), q 6 s 6 n− 2, satisfying

∂bf = 0, there exists F ∈ C∞r,s(D,E⊗m) such that F |bΩ = f and ∂F = 0.

Proof. The proof follows as in Theorem 4.1 in Saber [12]. �

Theorem 5. Under the same assumption of Theorem 4, if f ∈ C∞r,s(bΩ, E⊗m),

1 ≤ s ≤ n − 2, with ∂bf = 0, there exists u ∈ C∞r,s−1(bΩ, E⊗m) such that

∂bu = f .
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Proof. Let f ∈ C∞r,s(bΩ, E
⊗m), 1 ≤ s ≤ n − 2, with ∂bf = 0. Then from

Theorem 4, there exists F ∈ C∞r,s(Ω, E⊗m) such that F |bΩ = f and ∂F = 0.

Following Theorem 3, there exists U ∈ C∞r,s−1(Ω, E⊗m) satisfying ∂U = f in

Ω. Then u = U |bΩ satisfies ∂bu = f . �

Corollary 6. Let X be a Kähler manifold of dimension n ≥ 2 and let D b X be
a weakly q-concave domain with smooth boundary in X. Let E be a holomorphic
line bundle over X and E⊗m be the m-times tensor product of E for positive
integer m. Suppose that there exists a strongly plurisubharmonic function on a
neighborhood of bΩ. If Hr,s(X,E⊗m) = 0, then, for f ∈ C∞r,s(D,E⊗m), ∂f = 0,

q 6 s 6 n− 2, there exists u ∈ C∞r,s−1(D,E⊗m) such that ∂u = f .

Proof. The proof follows as in Corollary 4.3 in Saber [12]. �

The necessary and sufficient condition on f ∈ W
1
2
r,s(bΩ, E⊗m) to have a

∂̄-closed extension F on Ω is summarized as follows.

Theorem 7. Let Ω, E and X be the same as in Theorem 4.1. For f ∈
W

1
2
r,s(bΩ, E⊗m), 0 ≤ r ≤ n, q ≤ s ≤ n − 2. We assume that ∂̄bf = 0. Then

there exists F ∈ L2
r,s−1(Ω, E⊗m) such that F = f on bΩ and ∂̄F = 0 in Ω.

Proof. The proof follows as in Theorem 4.4 in Saber [12]. �

5. Extension from the boundary

Let X be a connected complex manifold of dimension n ≥ 2, and let Ω ⊂ X
be any domain with C∞-smooth boundary. Let E be a holomorphic vector
bundle over X. In this section we prove the following results:

Lemma 4. For any α ∈ C∞r,s(bΩ, E) satisfying ∂bf = 0, there exists α̃ ∈
C∞r,s(Ω, E) such that α̃|bΩ = α and that ∂α̃ vanishes to the infinite order on bΩ.

Proof. The proof follows as in Lemma 4 in Oshawa [9]. �

By virtue of a theory of Kodaira-Andreotti-Vesentini (cf. Kodaira [8], An-
dreotti and Vesentini [1]), we can show that a sufficient condition for the Ck-
extendability can be stated as follows.

Lemma 5. Let X be a connected Kähler manifold of dimension n and let
Ω b X be a weakly q-convex domain with C∞-smooth boundary. Let E be
a holomorphic vector bundle over X. Suppose that Ω admits a C∞ defining
function ρ such that

∂∂(− log(−ρ)) ≥ c
(
∂(− log(−ρ))∂(− log(−ρ)) + ω

)
.

holds on Ω for some positive constant c. Then, for any ψ ∈ C∞r,s(bΩ, E) ∩
ker (∂b, E) with s < n − 1, and for any nonnegative integer k, there exists a
∂-closed E-valued (r, s)-form Ψk of class Ck on Ω satisfying Ψk|bΩ = ψ.

Proof. The proof follows as in Theorem 5 in Oshawa [9]. �
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Ann. Fac. Sci. Toulouse Math. (6) 11 (2002), no. 1, 105–129.

[14] M.-C. Shaw, Local existence theorems with estimates for ∂b on weakly pseudo-convex

CR manifolds, Math. Ann. 294 (1992), no. 4, 677–700.
[15] K. Takegoshi, Representation theorems of cohomology on weakly 1-complete manifolds,

Publ. Res. Inst. Math. Sci. 18 (1982), no. 2, 551–606.

[16] , Global regularity and spectra of Laplace-Beltrami operators on pseudoconvex
domains, Publ. Res. Inst. Math. Sci. 19 (1983), no. 1, 275–304.

[17] E. Vesentini, Lectures on Levi convexity of complex manifolds and cohomology vanish-

ing theorems, Notes by M. S. Raghunathan. Tata Institute of Fundamental Research
Lectures on Mathematics, No. 39, Tata Institute of Fundamental Research, Bombay,

1967.

Sayed Saber
Mathematics Department

Faculty of Science

Beni-Suef University
Egypt

Email address: sayedkay@yahoo.com


